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Repeated Causal Decision Making

York Hagmayer
King’s College London

Björn Meder
Max Planck Institute for Human Development

Many of our decisions refer to actions that have a causal impact on the external environment. Such
actions may not only allow for the mere learning of expected values or utilities but also for acquiring
knowledge about the causal structure of our world. We used a repeated decision-making paradigm to
examine what kind of knowledge people acquire in such situations and how they use their knowledge to
adapt to changes in the decision context. Our studies show that decision makers’ behavior is strongly
contingent on their causal beliefs and that people exploit their causal knowledge to assess the conse-
quences of changes in the decision problem. A high consistency between hypotheses about causal
structure, causally expected values, and actual choices was observed. The experiments show that (a)
existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions
are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce
a causal model of the choice situation even when they have no initial causal hypotheses, which (d)
enables them to adapt their choices to changes of the decision problem.
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In this article, we examine the interplay between causal learning
and decision making. We are interested in two questions: Do
decision makers acquire knowledge about causal structure when
repeatedly acting upon a causal system in order to maximize the
state of a target variable? And does this causal knowledge help
people to adapt to changes in the decision task?

Our main hypothesis is that decision making is often contingent
on causal considerations and that people rely on causal learning
and reasoning to assess decision problems and adapt their choices
accordingly. For example, cancer is often treated by chemother-
apy, but the potential benefits of this treatment depend on a
number of factors. When the patient’s liver is working properly,
chemotherapy is often the most promising treatment. However,
when a patient suffers from liver dysfunction, which prevents
metabolizing the chemicals, it may be necessary to switch to a
different treatment, such as radiation therapy. Thus, the outcomes
of the available courses of action depend on the characteristics of
the underlying causal system. Causal knowledge enables the de-
cision maker to determine which of the available options is most
promising under the prevailing circumstances.

Despite the importance of causal knowledge, most theories of
decision making neglect the role of causal beliefs. The canonical
normative model of decision making—expected utility theory
(Savage, 1954; von Neumann & Morgenstern, 1944)—distin-
guishes between options, possible outcomes, and the associated
probabilities. These accounts implicitly assume that likelihood
estimates correctly mirror causal relations, although observable
statistical (“evidential”) relations may not necessarily reflect un-
derlying causal processes (Hagmayer & Sloman, 2009; Joyce,
1999; Nozick, 1993; Sloman & Hagmayer, 2006). For example,
there is a statistical relation between buying running shoes and
being in good shape, but buying shoes does not causally affect a
person’s physical fitness. Only running (i.e., the common cause)
will lead to being fitter. Thus, distinguishing between probabilities
that reflect causal relations and probabilities referring to spurious
associations is important for making good decisions.

Other theories acknowledge the importance of causal relations
in decision making (e.g., Joyce, 1999; Nozick, 1993; Skyrms,
1980). A major goal of these approaches is to distinguish “eviden-
tial” from “causal” expected utilities. While evidential expected
utilities are derived from probabilities that merely reflect statistical
relations, causal expected utilities only take into account probabil-
ities that reflect causal relations. A problem that these approaches
encountered was the lack of a formal modeling framework to
distinguish between causal and noncausal probabilistic relations in
a rigorous manner. Recent progress in causal modeling based on
graphical causal models and causal Bayes nets theory (Pearl, 2000;
Spirtes, Glymour, & Scheines, 1993; see also Dawid, 2002) offers
a potential solution to this problem.

The causal model theory of choice (Hagmayer & Sloman, 2009;
Sloman & Hagmayer, 2006) is a descriptive model based on these
theoretical advances, assuming that people often use the available
information to induce a causal model representation of the decision
situation. A causal model of a decision problem encompasses
knowledge about the structure of the system targeted by the

York Hagmayer, Department of Primary Care and Public Health Sci-
ences, King’s College London, London, England; Björn Meder, Center for
Adaptive Behavior and Cognition, Max Planck Institute for Human De-
velopment, Berlin, Germany.

Portions of this research were presented at the 2008 and 2009 meetings
of the Cognitive Science Society and the 2008 Subjective Probability,
Utility, and Decision Making (SPUDM) Conference. This research was
supported by Deutsche Forschungsgemeinschaft Grant DFG HA 3406/3-1.
We thank Iris Risse and Katharina Müller for collecting the data. We also
thank Miriam Bassok and Marc Bühner for helpful comments.

Correspondence concerning this article should be addressed to York
Hagmayer, Department of Primary Care and Public Health Sciences,
King’s College London, 42 Weston Street, London SE1 3QD, United
Kingdom. E-mail: york.hagmayer@kcl.ac.uk

Journal of Experimental Psychology: © 2012 American Psychological Association
Learning, Memory, and Cognition
2012, Vol. , No. , 000–000

0278-7393/12/$12.00 DOI: 10.1037/a0028643

1



intervention and the causal relations between actions, outcomes,
and payoffs. Such a model enables decision makers to simulate the
causal consequences of the available courses of action, thereby
ensuring that decisions are based on causal and not merely on
statistical relations.

Research has shown that people indeed use causal models and
causal inference when making simple one-shot decisions (Hag-
mayer & Sloman, 2009). However, in these studies, participants
only made decisions based on hypothetical scenarios without ac-
tually experiencing the consequences of the actions taken. Re-
search on causal learning, reasoning, and decision making has not
yet investigated to what extent people learn about causal structure
and use causal knowledge when repeatedly making decisions in
order to achieve a certain goal, such as maximizing a payoff.

Findings from research on dynamic decision making indicate
that people are able to learn to successfully manipulate and man-
age complex causal systems (Osman, 2010). However, this re-
search also indicates that decision makers usually acquire only
limited knowledge about the causal structure of the system (Berry
& Broadbent, 1995; but see Hagmayer, Meder, Osman, Mangold,
& Lagnado, 2010). Instead, people seem to learn to control causal
systems by strengthening the association between perceptual fea-
tures of problems and successful actions (Dienes & Fahey, 1995)
or by storing instances of previous actions and their outcomes in
memory (Lipshitz, Klein, Orasanu, & Salas, 2001). One explana-
tion for these findings is that the evidence available to participants
in these studies was insufficient for causal learning (see the Gen-
eral Discussion for limits of causal induction).

Causal Learning and Decision Making

Several studies support the idea that people have the capacity to
combine causal learning with decision making. People are able to
induce a causal model of a system from cues like temporal order,
covariation information, active interventions, and knowledge ac-
quired through social learning (Lagnado, Waldmann, Hagmayer,
& Sloman, 2007). There seems to be an advantage of causal
learning from active interventions (i.e., self-selected actions upon
a causal system) over learning from passive observations, which
seems to be driven by the fact that interventions introduce a
temporal asymmetry between cause and effect (Lagnado & Slo-
man, 2004, 2006; see also Greville & Buehner, 2010; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003). People also have the
capacity to integrate separately learned causal relations into more
complex models and to draw inferences from them (Ahn & Den-
nis, 2000; Baetu & Baker, 2009; Darredeau, Baetu, Baker, &

Murphy, 2009; Hagmayer, Meder, von Sydow, & Waldmann,
2011). Causal knowledge is also used as a metacue for searching
and selecting cues in multiple-cue judgment (Garcia-Retamero,
Wallin, & Dieckmann, 2007). Finally, people are able to use their
knowledge of causal structure to predict the consequences of novel
interventions on a causal system (Meder, Hagmayer, & Wald-
mann, 2008, 2009; Sloman & Lagnado, 2005; Waldmann & Hag-
mayer, 2005).

This work shows that people have the capacity to derive causal
model representations from experience when requested to do so
and rely on causal knowledge when asked to make decisions
pertaining to causal systems. However, it is unclear to what extent
people induce causal models when they have other goals than
revealing the causal structure of the environment. It could be that
causal learning only takes place when this is the primary goal. But
it could also be that there is a natural tendency to learn about
causal relations, even when a decision maker pursues another goal.

Learning and Representation in Repeated Decision
Making

In many real-world situations, people repeatedly have to choose
among actions that constitute active interventions on a causal
system (e.g., medical treatments). When making decisions, the
goal usually is to achieve a certain outcome (e.g., to cure a disease)
and not to learn about causal structure (e.g., the physiological setup
of a particular patient). Nevertheless, the observed consequences
of actions and their probabilities reflect the causal mechanisms
within the system. In addition, observable cues (e.g., the temporal
order of effects, direct vs. indirect effects of interventions) may
provide hints to the underlying causal structure. Because repeated
interventions may allow for the induction of a causal model of the
decision problem, the question is what do people learn in such
conditions.

Figure 1a depicts an example of a causal system used in our
studies. It comprises three alternative actions (1, 2, 3), three
outcome variables (A, B, C), and a final effect variable, which
represent the decision maker’s payoff. As can be seen from the
model, the payoff is not directly influenced by any of the actions
but only via the intermediate outcome variables A, B, and C. Of
particular importance is that the intermediate variable A exerts a
causal impact on variable B. By repeatedly choosing among the
options, people can observe that Action 1 generates variable A and,
in turn, B, while Actions 2 and 3 will generate only a single
outcome variable (B and C, respectively). Thus, the experienced
feedback comprises information about the statistical and causal

Figure 1. Possible representations of a decision problem. Squares represent possible actions, and circles
represent domain variables: (a) true causal system, (b) representation of action-payoff contingencies, (c)
representation of action-outcome-payoff contingencies, and (d) causal model representation.
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relations of options, outcomes variables, and payoffs. Competing
theories of (repeated) decision making and learning differ with
respect to what kind of representation are assumed to result from
the experienced feedback.

Action-Payoff (AP) Contingencies

Action-payoff representations include only relations between
options (i.e., actions) and the received payoffs (see Figure 1b). The
characteristic feature of these representations is that the interme-
diate outcomes resulting from the taken actions are not repre-
sented. In the animal learning literature, such approaches are
sometimes called habit learning (e.g., Niv, Joel, & Dayan, 2006);
in machine learning and cognitive neuroscience, they are often
referred to as model-free reinforcement learning (Dayan & Niv,
2008; Sutton & Barto, 1998). Associative models of instrumental
learning are a classic example from the human learning literature
(cf. Pearce & Bouton, 2001; Shanks, 2010). An example from the
judgment and decision-making literature is Barron and Erev’s
(2003) value assessment model, a reinforcement learning model
that estimates the payoff distributions and expected values of the
available options from feedback. Similar to habit learning models,
the value assessment model only represents options and the ex-
pected value of the options.1

Action-Outcome-Payoff (AOP) Contingencies

Action-outcome-payoff representations encompass options, in-
termediate outcome variables, and the payoffs associated with
these variables (see Figure 1c). Expected utility theories are the
classical example from judgment and decision making; a similar
approach from the animal learning literature is goal-directed
learning (Niv et al., 2006) or model-based learning (Dayan & Niv,
2008; Sutton & Barto, 1998). The main difference to AP contin-
gencies is that the outcomes resulting from an action and the value
connected with these outcomes are represented separately. There-
fore, such models can accommodate revaluations of outcomes by
altering the values associated with the outcomes while preserving
the action-outcome relations. However, these models have only a
limited sensitivity to the causal structure underlying the decision
problem (see our experiments for specific predictions).

Causal Model Representations

A mental causal model of a decision problem comprises options,
their causal relations to outcome variables, the causal relations
among these variables, and their relations to the payoff. Figure 1d
depicts such a model. Causal model theories (Sloman, 2005;
Waldmann, Hagmayer, & Blaisdell, 2006; Waldmann & Holyoak,
1992) assume that learners acquire these models through individ-
ual or social learning. While some theories assume that the struc-
ture of the model is derived from cues like temporal order and
interventions (Hagmayer et al., 2007; Lagnado et al., 2007), other
accounts propose that people primarily use statistical properties of
the observed data (Gopnik et al., 2004; Griffiths & Tenenbaum,
2005). Typically, causal model theories assume that the parameters
of the model (e.g., the strength of the causal relations and base
rates of causes) are estimated on the basis of the observed cova-
riations. Causal Bayes nets theory (Pearl, 2000; Spirtes et al.,

1993) provides a formal modeling framework for the induction of
causal models.2

The advantage of causal knowledge is that it enables decision
makers to immediately evaluate the implications of changes in the
decision problem, such as the removal of a variable from the
underlying causal system or the addition of a novel option. It
therefore allows to flexibly respond to changes without requiring
further learning input. For instance, knowledge about the causal
relations among genes, proteins, and cancer enables personalized
medicine.

Hypotheses and Overview of Experiments

Based on a causal model theory of decision making, we propose
the following hypotheses. If decision makers have a causal model
hypothesis prior to repeated decision making, this knowledge will
guide decisions and the interpretation of experienced feedback. If
the observed decision outcomes are not consistent with the initial
causal hypothesis, the mental causal model will be revised accord-
ingly. When decision makers have no initial causal hypothesis,
they will use decision feedback to induce a causal model to the
extent possible given the available cues to causal structure. If the
decision problem changes, decision makers will rely on their
mental causal models to evaluate possible actions and adapt their
behavior accordingly.

We conducted three experiments to investigate these hypothe-
ses. In each experiment, participants were asked to maximize a
certain payoff through their decisions. They were never asked to
engage in causal learning or reasoning. Experiment 1 examined
how beliefs about causal structure guide repeated decisions. There-
fore, we manipulated decision makers’ beliefs about the causal
structure underlying the decision problem while keeping the ob-
servable consequences constant. In Experiments 2 and 3, decision
makers received no information about causal structure prior to
decision making. Thus, they had no causal hypothesis to rely on at
the start. Participants received decision feedback, enabling them to
induce a causal model or to engage in mere instrumental learning,
such as learning the expected value of actions (AP) or the relation
among actions, outcomes, and payoffs (AOP). All approaches
entail optimal (payoff-maximizing) choices as long as the decision

1 In order to account for certain tendencies in human decision making,
the value-assessment model may also include the associative learning of
certain rules, such as loss avoidance (see Barron & Erev, 2003, for details).

2 A formal theory of causal models in learning, reasoning, and decision
making is offered by causal Bayes nets theories (for a detailed introduction,
see Pearl, 2000; Spirtes et al., 1993; see also Dawid, 2002). Briefly, this
account uses directed acyclic graphs to represent the structure of a causal
system and connects the structural models with probability distributions
over the domain variables. On a causal interpretation of these graphs (as
opposed to a purely statistical semantics), the model can be used for
reasoning about interventions on the causal system (see Pearl, 2000; Spirtes
et al., 1993; see also Meder et al., 2008, 2009). In a decision-making
context, it is useful to choose a more general modeling framework in which
interventions are explicitly represented as exogenous cause variables (e.g.,
Dawid, 2002; Spirtes et al., 1993). This approach allows to model different
types of interventions, such as actions that do not deterministically fix the
value of a variable but only exert a probabilistic influence on the target (for
a detailed discussion, see Eaton & Murphy, 2007; see also Meder, Ger-
stenberg, Hagmayer, & Waldmann, 2010).
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situation does not change, but they make diverging predictions
when the decision problem is altered.

Experimental Procedure

All experiments consisted of an initial repeated decision-making
phase, in which participants were asked to maximize the state of a
payoff variable by repeatedly choosing between different actions.
This repeated decision-making phase was followed by a test phase
in which the structure of the decision problem was modified. In the
test phase, participants were asked to continue maximizing the
payoff.

To evaluate whether learners spontaneously engaged in causal
induction, we used two types of modifications in the test phase.
The first manipulation was to introduce new options whose con-
sequences had not yet been observed (Experiments 1 and 2). The
rationale was that only knowledge about causal structure would
allow participants to assess whether the novel options were supe-
rior or inferior to the existing courses of actions. The second
manipulation was to change the structure of the causal system by
removing one of the variables (Experiment 3). In this case, the
available actions were identical to the initial decision-making
phase, but their accurate reevaluation would require causal knowl-
edge.

We used three different dependent variables to tap into decision
makers’ representations and decision-making processes. First, we
examined their choice behavior after modifying the decision prob-
lem (i.e., after introducing new options or altering the causal
structure of the decision problem). Second, we asked decision
makers to provide estimates of the values of the different options,
both for the original and modified choice situation. Third, we tried
to directly elicit participants’ representation of the decision prob-
lem, either by a free-elicitation procedure (Experiments 1 and 3) or
by a forced choice among potential causal models (Experiment 2).
To exclude the possibility that participants’ choices in the test
phase were contaminated by eliciting a causal model of the deci-
sion problem, actual choices were collected first, followed by the
expected value estimates and the causal model task.

Model Comparisons

In all experiments, we compared the predictions of a causal
model account to two other accounts. The first account, action-
payoff (AP) learning, is representative for models from animal
learning and decision making, assuming that decision makers
merely learn about the payoffs resulting from actions (e.g., Dayan
& Niv, 2008; Erev & Barron, 2005; Niv et al., 2006; Sutton &
Barto, 1998). Therefore, we used the expected values of each
action resulting from the initial repeated decision-making phase to
derive model predictions for the test phase.

The second model, action-outcome-payoff (AOP) learning, as-
sumes that learners represent the relations between actions and
immediate outcome variables and the value of the outcome vari-
ables (cf. Dayan & Niv, 2008). A critical feature of the causal
structures used in the present experiments was that some outcome
variables were causally related to each other. Since research on
associative learning has shown that learners are at least sometimes
sensitive for the interrelation of predictive variables (Pearce &
Bouton, 2001), we considered two variants of AOP learning. The

first model (AOP1) assumes that people only learn about the
relations of each action to all outcome variables and the relations
of the outcome variables to the payoff. The second model (AOP2)
assumes that people may also learn that outcome variables predict
each other (e.g., that there is a statistical relation between variables
A and B in Figure 1a). To derive the predictions of the first model
(AOP1), we used the contingencies among actions and outcome
variables and the expected values of the outcome variables under
the assumption that their contributions to the payoff are linear-
additive (e.g., Rescorla & Wagner, 1972)—an assumption also
supported by empirical research (De Houwer, 2009; Waldmann,
2007). To derive the predictions of the second model (AOP2), we
additionally took into account the contingencies between the out-
come variables (specific predictions are presented in the descrip-
tion of the experiments below).

Finally, the causal model account assumes that learners use the
available cues to infer the causal structure of the domain (Lagnado
et al., 2007) and the observed statistical relations to infer the
strength of the causal relations (Waldmann & Hagmayer, 2001),
including the contribution of the outcome variables to the payoff.
Note that this account allows that the strengths of causal relations
may be learned through reinforcement learning. The critical claim
is that the causal model inferred from cues like temporal order
determines which relations are learned and represented (i.e., only
direct causal relations) and how they are represented (i.e., in terms
of causes and effects). These representations, in turn, guide assess-
ments of changes in the decision problem. Following causal model
theories (Waldmann et al., 2006), we assumed causal influences of
different variables to be additive.

Experiment 1

The goal of the first study was to examine how repeated deci-
sion making is guided by beliefs about causal structure. We ma-
nipulated decision makers’ causal hypotheses between subjects by
suggesting different causal models prior to the initial repeated
decision-making phase. The consequences of the available actions
during this phase were identical for all participants. Thus, potential
differences between conditions cannot be attributed to differences
in feedback.

We hypothesized that participants would use the initially pre-
sented causal model hypothesis to evaluate the experienced feed-
back and revise their mental model if the feedback was inconsis-
tent with the suggested structure. As the initial hypotheses differed
between conditions and the observed data only partially confirmed
them, participants should end up with different revised hypotheses,
despite identical learning input. By contrast, the other models (AP
and AOP) suggest that people would use the feedback to acquire
knowledge about the contingencies among actions, outcomes, and
payoffs. As the observed data were identical, no differences be-
tween conditions should be observed.

Method

Participants and design. Participants were 36 undergradu-
ates from the University of Göttingen who were randomly as-
signed to two causal model conditions (causal chain vs. common
cause). They received course credit or were paid 7€.

Materials and procedure. All participants were tested indi-
vidually on a computer. The experiment consisted of a repeated
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decision-making phase and a subsequent test phase. In both
phases, participants were requested to maximize the state of a
payoff variable by repeatedly choosing between different actions.
They were not instructed to learn about causal structure.

We used a biological scenario in which three genes (outcome
variables A, B, C) could be activated by three types of injections
(actions doU, doV, doW). The genes allegedly influenced the level
of a growth hormone, which constituted the payoff variable. Op-
tions doU, doV, and doW, as well as genes A, B, and C, were binary
variables (present vs. absent and active vs. inactive); the payoff
was a continuous variable ranging from 0 to 100 points.

The instructions (see the Appendix) informed participants that
scientists had bred mice whose growth hormone genes had been
deactivated but which could be re-activated by injecting the mice
with different types of “messenger-RNA.” No information was
given on how much hormone was produced by the individual
genes. Participants then received a written description and a graph-
ical representation of either a causal chain or a common cause
model hypothesis. Thus, a qualitative hypothesis regarding causal
structure was suggested to participants, but they received no in-
formation regarding the strengths of the causal relations. Note that
participants were not informed about the subsequent test phase.

According to the suggested causal chain model (Figure 2, left),
actions doU, doV, and doW directly activate only one of the three
genes A, B, or C. However, the genes are also causally related to
each other: An activation of A triggers an activation of B
(doW3A3B), and C activates B (doU3C3B). By contrast, in the
common cause model condition (Figure 2, right), participants were
instructed that action doW directly affects genes A and B
(A4doW3B) and that doU directly affects B and C
(B4doU3C).

Both causal model hypotheses were only partially correct. The
true underlying causal models are depicted in the middle row of
Figure 2. Contrary to the suggested models, doU neither directly
nor indirectly affected gene B, but only activated C. The table in
Figure 2 specifies the feedback that decision makers experienced,
which was identical in both conditions. Choosing doW resulted in
an activation of both A and B and a payoff of �80 (i.e., the
hormone level increased by 80 points). Actions doV and doU
activated B and C, respectively, yielding payoffs of �40 and �60.
Choosing not to take any action (“no do”) left the genes inactive
and generated no payoff. For each condition, two counterbalancing
conditions were used in which the causal roles of doU and doW
were switched.

In the instruction to the initial repeated decision-making (RDM)
phase, participants were told the following: “Your task is to
activate the genes by injecting individual mice with U-, V-, or
W-RNA in order to maximize the animals’ hormone level” (see the
Appendix). Each of the 30 trials referred to a new mouse whose
genes were inactive prior to intervention. After each decision,
feedback was provided regarding which genes had been activated
and the resulting level of growth hormone (Figure 3). Thus,
participants received information on the state of the outcome
variables and the final payoff. No further cues to causal structure
(e.g., temporal order of events) were provided.

In the following test phase, which comprised 10 trials, a new set
of options was introduced (see the Appendix for instructions).
Participants were informed that they now had only “A-RNA” (�
doA) and “C-RNA” (� doC) available, which deterministically

activate genes A and C, respectively. Then they were given the
following instruction: “Your task is to maximize the level of the
growth hormone in the individual animals by applying these
messenger-RNA.” No feedback was provided in this phase. Thus,
the consequences of the new interventions could not be observed.

Following the test phase, participants were requested to estimate
the expected payoffs of all actions (doU, doV, doW, doA, doC).
Finally, participants were provided with a graph depicting only the
variables (i.e., a graph similar to the one in Figure 2, middle row,
without arrows) and were asked to insert all causal relations they
assumed to hold between actions, intermediate outcome variables,
and the payoff variable.

Model predictions. For the initial repeated decision-making
phase, all accounts predict participants learning that option doW
yields the highest payoff, followed by doU and doV (see Figure 2).
Action-payoff (AP) learning suggests that decision makers merely
learn the expected value of each action. When participants engaged
in action-outcome-payoff (AOP) learning instead, they should also
learn that doU is not related to B, and they should learn that B is
present whenever doW is chosen (AOP1 and AOP2) or variable A
is present (AOP2). A causal model account suggests that partici-
pants revise the initially suggested structure and remove the causal
link between doU and B (common cause condition) and C and B
(causal chain condition). Based on the assumption that the influ-
ence of the genes is additive, they should also learn how much
hormone each of the genes produces (AOP1 and AOP2 and causal
model theory).

For the test phase, causal model theory predicts that participants
would rely on their revised causal model to infer the causally expected
values of the new interventions (see the table in Figure 2). According

Figure 2. Causal models and feedback structure in Experiment 1. Squares
indicate possible actions, and circles indicate outcome variables. Numbers
in graphs represent probabilities and generated payoffs, respectively. In the
test phase, no feedback regarding outcome variables and payoff was given.
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to the revised causal chain model, doA would activate A and B,
generating a total payoff of �80, whereas doC would activate C,
yielding a payoff of �60. Hence, participants should prefer doA.
The revised common cause model implies that doA would yield a
payoff of �40 because variables A and B are not causally related.
Accordingly, decision makers should opt for doC, which yields a
payoff of �60. Thus, participants should exhibit diverging pref-
erences in the test phase.

An AP learning model does not allow inferring the payoff of the
novel option, as the acquired representations are restricted to the
values of the experienced actions. Both AOP learning models
entail that participants should be able to make an inference regard-
ing the payoff of the novel options. According to the first model
(AOP1), which only represents the values of the individual out-
come variables, participants should infer that the expected payoff
of an activation of A would be �40 and of C �60. Thus, they
should prefer intervention doC over doA, regardless of condition.
According to the second model (AOP2), the deterministic relation
between variables A and B [P(B�A) � 1.0] is learned and taken into
account. Hence, doA would have a higher expected payoff than
doC [EV(doA) � �80, EV(doC) � �60]. Therefore, a preference
for doA should result in both conditions. Note that although both
AOP accounts make different predictions about what is learned
and represented, they do not make differential predictions for the
two causal model conditions.

Finally, when queried about the underlying causal model, we
expected participants to describe the revised but not the initially
instructed model (i.e., no causal link C3B in the chain model and
no link doU3B in the common cause model). AP learning makes
no specific predictions (or trivially only assumes links between
actions and payoffs). AOP learning entails that participants should

not include any relation among doU and B, but it makes no other
particular predictions, as these models do not specify how an
instructed causal model is modified by the observed statistical
relations.3

Results and Discussion

Table 1 depicts participants’ choices for the initial repeated
decision-making phase and the subsequent test phase. In the first
phase, participants exhibited a clear preference for doW, regardless
of condition. Statistical analyses (between-participants t tests for
doU, doV, doW, and “no do”) revealed no reliable differences
between conditions (all ps � .19).4 By contrast, a clear difference
between conditions was obtained for the test phase. In line with a
causal model account, participants chose doA significantly more
often in the causal chain than in the common cause condition,
t(34) � 3.16, p � .01.

Participants’ estimates of the expected values were consistent
with their choices (see Table 1). Again, no differences between
conditions resulted for the first phase (all ps � .33), but only for
the test phase. In the causal chain condition, participants judged
doA to have a higher expected value than doC, whereas they rated

3 An alternative would be to assume that a model is derived from the
observed contingencies. Several causal models are consistent with the data:
Variable A could be a cause of B, A and B could be generated by a common
cause, or there might be both a common cause and a direct causal relation.
Thus, a data-driven account does not allow deriving specific predictions.

4 As choices of the different options were logically dependent on each
other, we compared the number of choices of each option separately
between conditions.

Figure 3. Stimuli and schematic outline of a trial during the initial repeated decision-making phase in
Experiment 1.
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doC slightly higher than doA in the common cause condition. An
analysis of variance (ANOVA) with actions doA versus doC as a
within-participants factor, and condition (causal chain vs. common
cause) as a between-participants factor, resulted in the expected
interaction effect, F(1, 34) � 11.5, p � .01, MSE � 148.1.
Follow-up analyses confirmed that participants gave higher ratings
for doA in the causal chain than in the common cause condition,
t(34) � 5.96, p � .001, whereas there was no significant difference
with respect to doC, t(34) � 1.47, p � .15. Decision makers in the
chain condition seemed to have realized that doA would activate B,
thereby entailing a higher expected payoff.

Finally, we analyzed the causal models drawn by participants. In
the common cause condition, all participants judged doW to be the
common cause of A and B, 94% judged doV to be the cause of B,
and 67% judged doU to be the cause of variable C only. In the
chain condition, 71% assumed doW to be the indirect cause of B
(doW3A3B), 24% regarded doW to be the common cause of A
and B, 88% recognized doV as being the cause of B, and, finally,
82% judged doU to be neither a direct nor indirect cause of B.
These results show that most participants revised the initially
suggested causal model in accordance with the experienced feed-
back.

Overall, the findings indicate that most participants represented
the decision task in terms of mental causal models and used the
experienced feedback to estimate parameter values and to revise
their hypotheses. The causal hypotheses, in turn, affected partici-
pants’ choices in the test phase. Data-driven models like AP and
AOP cannot account for the obtained differences because neither
the learning input nor participants’ choices during the initial
decision-making phase differed between conditions.

Experiment 2

The first goal of Experiment 2 was to examine whether decision
makers would spontaneously induce a causal model representation
during repeated decision making. This would demonstrate that
people not only use existing causal beliefs (like in Experiment 1)
but also show a natural tendency to infer the causal structure
underlying a decision problem. Therefore, no causal hypotheses
were suggested. Instead, learners were provided with options that
would enable them to infer the underlying causal structure from
the experienced feedback. As cues to causal structure were avail-
able, we expected participants to induce a causal model represen-
tation and to use it to make decisions in the test phase.

The second goal was to show that causal induction during
repeated decision making is not limited to simple tasks with

deterministic causal links. We increased task complexity by using
a probabilistic causal system and actions that only probabilistically
generated their effects.

Method

Participants and design. Sixty undergraduate students from
the University of Göttingen participated for course credit or were
paid 7€. They were randomly assigned to one of three causal
model conditions (causal chain, common cause 1 [CC1], common
cause 2 [CC2]).

Materials and procedure. Participants were tested individ-
ually on computers in small groups of up to six people. Figure 4
shows the causal chain and common cause structures underlying
the decision problem in the experimental conditions and the re-
spective feedbacks. In the causal chain condition, option doL
influenced variable B only by way of A (doL3A3B), whereas in
the two common cause conditions, doL independently affected A
and B (A4doL3B). We examined two different common cause
conditions. In one condition (CC1; see Figure 4b), the available
options (doL, doW) had the same expected values as in the causal
chain condition. This manipulation, however, required different
probabilistic relations than in the chain condition [e.g., P(A&B �
doL)Chain � P(A&B � doL)CC1; see Figure 4b]. We therefore
designed a second common cause condition (CC2; see Figure 4c)
in which P(A&B�doL) and P(A�doL) were identical to the chain
condition. As a consequence, the expected value of doL was higher
than in the chain condition, but the rank order of the actions’
expected values was identical in all conditions [i.e., EV(doL) �
EV(doW); see Figure 4].

We used a biological scenario according to which certain bac-
teria produce a vaccine against diseases (see the Appendix for
instructions). All participants received the same instructions in-
forming them that the production of the vaccine is regulated by
two genes, A and B, that are inactive by default. Their task was to
produce as much vaccine as possible by activating the genes with
“trigger substances” L and W. Participants were not informed of
how the trigger substances related to the activation of the genes,
but it was pointed out that the two genes may be causally interre-
lated. The instructions also indicated that new trigger substances
might become available after the initial repeated decision-making
phase. Figure 5 outlines stimuli and procedure. Recall that, in
contrast to Experiment 1, no specific causal model was suggested.

The initial repeated decision-making phase consisted of 100 trials.
Each decision referred to bacteria whose genes were inactive prior to
applying a trigger substance. Participants could choose between three

Table 1
Mean Number of Choices (�SEM) and Expected Value Estimates (�SEM) in Experiment 1

Dependent variable Condition

Repeated decision-making phase (30 trials) Test phase (10 trials)

doW doV doU no do doA doC no do

Choices Chain model 20.6 (1.65) 3.2 (0.62) 4.5 (0.72) 1.7 (0.43) 7.8 (0.65) 2.1 (0.63) 0.1 (0.06)
Common cause model 18.9 (1.66) 4.1 (0.69) 5.5 (0.94) 1.3 (0.28) 4.3 (0.88) 5.4 (0.90) 0.1 (0.06)

Expected values Chain model 78.9 (1.11) 43.3 (1.81) 55.6 (2.58) 70.0 (3.70) 54.4 (3.81)
Common cause model 80.0 (0.00) 43.3 (2.43) 54.4 (2.17) 42.4 (2.59) 46.3 (4.02)

Note. Actions “do (●)” refer to the choices people could take (see Figure 2).
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options (doL, doW, no do). After making a decision, participants first
observed which genes became active and then received information
on the total amount of vaccine produced (payoff). If on a given trial
only one gene became active, the activation was illustrated by slowly
changing the color of the gene. If on a particular trial both A and B
were activated, the temporal order of the outcome variables con-
formed to the underlying causal structure. In the chain condition,
participants first observed that gene A became active and then, with a
delay of 1 s, that gene B also became active. In the common cause
condition, both genes became active simultaneously. After the ani-
mation, information regarding the payoff was given along with a
statement on which genes had been activated (see Figure 5).

The subsequent test phase consisted of 10 additional decision
trials. In this phase, a novel option was introduced (see the Ap-
pendix for instructions). Decision makers were informed that a
new trigger substance had been developed, which reliably acti-
vated gene A (i.e., with a probability of 1). Then, participants could
choose between the two known options (doL, doW) and the new
option doA to maximize the payoff variable. No feedback was
provided in this phase (i.e., participants did not observe any
activation of the genes, and they did not receive feedback regard-
ing the produced amount of vaccine).

Upon completion of the test phase, participants were asked to
estimate the expected values of all options. Then, they were
queried about their assumptions about the causal structure under-
lying the decision task. We used a forced-choice task in which

participants were presented with graphs of a causal chain and a
common cause model (similar to the ones shown in Figure 4, but
without the numbers), and they had to indicate which of the two
models would correctly describe the causal relations between
actions, intermediate variables, and payoff.

Model predictions. For the initial repeated decision-making
phase, all models predict participants learning that option doL has
a higher expected value than doW and that they adjust their choices
accordingly. Based on a causal model account, we also expected
them to infer the underlying causal model from temporal informa-
tion (e.g., sequential vs. simultaneous activation of genes A and B)
and statistical properties of the learning data.

For the test phase, the causal model account predicts that par-
ticipants would use their causal model to infer the expected payoff
of the novel option doA. In the chain condition, the new option doA
should be preferred as it has a higher expected value than doL (see
Figure 4). By contrast, in the common cause conditions, interven-
ing on A would not affect B; therefore, doL should be preferred
over doA.

An AP learning model assuming that only contingencies among
options and payoffs are represented does not yield any predictions
with respect to the novel option, because the intermediate outcome
variables are not separately represented. However, an AOP model
would be able to make predictions. The first model (AOP1), which
does not represent relations among the outcome variables, entails
that the expected payoff of doA would be 100, as this is the value

Figure 4. Causal models and feedback structure of Experiment 2. Squares indicate possible actions, and circles
indicate outcome variables. Numbers in graphs represent probabilities and generated payoffs, respectively.
Option doA was only available in the test phase. This action has the highest causally expected value in the causal
chain condition but not in the two common cause conditions. In the test phase, no feedback regarding outcome
variables and payoff was given. Prob � probability; EV � expected value.
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associated with outcome variable A. Therefore, option doL should
be preferred over doA, as the expected value of doL is higher in all
conditions (see Figure 4). The second model (AOP2) is sensitive to
the statistical relation between variables A and B. The observed
probabilities P(B�A)Chain � 0.75, P(B�A)CC1 � 0.65, and
P(B�A)CC2 � 0.75 entail the following expected values:
EV(doA)Chain � 175 � EV(doL)Chain � 131, EV(doA)CC1 �
165 � EV(doL)CC1 � 130, and EV(doA)CC2 � 175 � EV-
(doL)CC2 � 152. Thus, a preference for doA should result in all
conditions.

In summary, a causal model account predicts different choices
and estimates of expected values, depending on the underlying
causal model, whereas the other accounts predict no differences
between conditions.

Results and Discussion

Tables 2 and 3 show the results of Experiment 2. In the initial
decision-making phase, decision makers had a clear preference for

option doL, regardless of condition (see Table 2). Two ANOVAs
with the three conditions as a between-participants variable and
choices of doW and doL, respectively, as dependent variables
revealed no statistical differences between conditions (doW F � 1
and doL F � 1). By contrast, participants’ choices during the test
phase differed (see Table 3). Decision makers in the chain condi-
tion exhibited a strong preference for the new option doA, indi-
cating that they realized that the novel option had a higher ex-
pected value. In the two common cause conditions, participants
preferentially chose doL. Significantly more doA choices were
obtained in the chain condition than in conditions CC1, t(38) �
3.50, p � .001, and CC2, t(38) � 5.23, p � .001. The two common
cause conditions did not differ from each other, t(38) � 0.93,
p � .35.

Estimated payoffs for doL and doW closely resembled the actual
values, though participants in the CC2 condition underestimated
the expected value of doW, and participants in the chain condition
slightly underestimated the value of doA. An ANOVA with option

Figure 5. Stimuli and schematic outline of a trial in the repeated decision-making phase in Experiment 2. After
making a decision, an animation was shown, illustrating which genes had been activated by the intervention.
Finally, information on the generated payoff (amount of produced vaccine) was provided, along with information
regarding which genes had been activated.
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(doL, doW, doA) as a within-participant factor, and causal model
(causal chain vs. common cause) as a between-participants factor,
yielded the expected interaction effect, F(1, 114) � 3.93, p � .01,
MSE � 945.3. The crucial analyses concern option doA, whose
actual consequences people never observed. Estimates in the chain
condition were significantly higher than in condition CC1, t(38) �
2.4, p � .02, and condition CC2, t(38) � 2.3, p � .03. The two
common cause conditions did not differ from each other, t(38) �
1.3, p � .19.

To assess decision makers’ beliefs about causal structure, they
were asked to choose between graphs of a causal chain and a
common cause model. In all three conditions, the majority of
participants chose the correct model: 85% in the chain condition,
and 70% and 75% in common cause conditions 1 and 2, respec-
tively.

Overall, there was a strong concordance between the prefer-
ences that decision makers revealed through their choices, their
expected value estimates, and their subjective beliefs about the
causal structure of the decision problem: Participants assuming a
chain model (regardless of true underlying model) chose doA more
often than participants assuming a common cause model
(MdoA�chain � 6.93, SEM � 0.57; MdoA�CC � 3.41, SEM � 0.56),
t(58) � 4.37, p � .01, and gave higher estimates (MdoA�chain �
138.6, SEM � 6.87; MdoA�CC � 107.2, SEM � 5.78), t(58) � 3.52,
p � .01.

Taken together, participants seemed to have induced a causal
model based on the observed feedback and later used these models
to infer the value of the new option. This resulted in differential
preferences for the novel option. The chain and the first common

cause condition provided identical feedback with respect to the
payoffs of both conditions. Therefore, a learning model encoding
only contingencies among options and payoffs would yield iden-
tical representations and cannot explain the diverging preferences.
As outlined above, the findings also cannot be accounted for by
models learning about the contingencies among options, outcome
variables, and payoffs, which would also predict no differences
between conditions.

Experiment 3

The goal of Experiment 3 was to extend the findings of Exper-
iment 2 by using a different manipulation in the test phase. Instead
of adding a novel option, the causal structure was modified by
removing one of the variables from the causal system. Causal
relations were again probabilistic, and interventions were imper-
fect.

Method

Participants and design. Forty-eight undergraduate students
from the University of Göttingen participated for course credit or
were paid 7€. The factor causal model (causal chain vs. common
cause) was varied between conditions.

Materials and procedure. Participants were tested individ-
ually on computers. Figure 6 shows the two experimental condi-
tions, causal chain and common cause, and the associated feedback
structures. We used the same materials and procedure as in Ex-
periment 2 (i.e., the bacteria stimuli and the task to maximize the
amount of produced vaccine; see Figure 5 and the Appendix for
instructions). As in the previous study, participants were not pro-
vided with a causal model hypothesis prior to the decision-making
phase. The only difference to Experiment 2 was that there were
three genes (A, B, C) instead of two. Figure 6 shows the two
conditions. In the causal chain condition, option doL influenced B
only by way of A (doL3A3B). In the common cause condition,
doL was directly related to both A and B (A4doL3B). Thus,
whereas in the chain condition the presence of A was a necessary
event for the occurrence of B [i.e., P(B�¬ A) � 0], this was not the
case in the common cause condition [i.e., P(B�¬ A) � 0]. Despite
this difference, the expected values of the available options were
identical across conditions: EV(doL) � 140, and EV(doW) � 40.

The initial repeated decision-making phase consisted of 100
trials, with the temporal order of events conforming to the under-

Table 2
Mean Number of Choices (�SEM) and Received Payoffs
(�SEM) During the Initial Repeated Decision-Making Phase in
Experiment 2

Condition

Choices

doL doW no do

Causal chain 74.8 (3.6) 21.8 (3.1) 3.5 (0.8)
Common cause 1 77.7 (2.6) 20.3 (2.4) 2.0 (0.4)
Common cause 2 73.5 (4.2) 23.7 (3.7) 2.9 (0.9)

Note. Actions “doL” and “doW” refer to the choices people could take
(see Figure 4); “no do” denotes the decision not to take any action.

Table 3
Mean Number of Choices (�SEM) and Mean Expected Values Estimates (�SEM) in the Test
Phase of Experiment 2

Dependent variable Condition doL doW doA

Choices Causal chain 2.2 (0.4) 0.1 (0.6) 7.8 (0.7)
Common cause 1 5.4 (0.8) 0.5 (0.8) 4.2 (0.8)
Common cause 2 6.2 (0.9) 0.5 (0.7) 3.3 (0.6)

Expected value estimates Causal chain 134.8 (8.0) 75.0 (4.0) 140.0 (8.8)
Common cause 1 141.3 (6.4) 68.8 (4.8) 112.0 (7.8)
Common cause 2 157.0 (10.1) 59.6 (7.3) 113.5 (7.5)

Note. Actions “doL,” “doW,” and “doA” refer to the choices people could take (see Figure 4). Option “doA”
was only available in the test phase.
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lying causal model (i.e., genes A and B became either sequentially
or simultaneously active). The test phase comprised 10 additional
decisions. The instructions to the test phase informed decision
makers that they would be presented with bacteria that did not
possess gene A. Accordingly, the graphical representation of the
bacteria in the test phase was lacking one of the genes. No
feedback with respect to the activation of the gene or the amount
of vaccine was provided in the test phase. Then, participants were
requested to estimate the expected payoffs of all options in both
decision-making phases (i.e., with and without variable A). Finally,
participants were presented with an empty graph depicting the
variables and were asked to indicate the hypothesized causal
relations by drawing arrows between options, outcome variables,
and payoff.

Model predictions. For the initial repeated decision-making
phase, all models again predict participants learning about the
payoffs of the available options and prefering doL over doW. The
causal model account also predicts that they would use the avail-
able cues (i.e., the observable statistical and temporal relations) to
infer the underlying causal model.

Different predictions are entailed for the test phase. A causal
model account implies that the removal of variable A should result
in different choices in the two conditions. In the chain condition,
participants should have induced a model according to which doL
affects B only by way of A. Therefore, a removal of A renders doL
ineffective, making doW the better option. In the common cause
condition, the removal of A also decreases the expected value of
doL. However, because doL directly influences B, doL remains the
better option (see Figure 6).

An AP model would build up the same representation in both
conditions and would not be able to differentially adapt to the
removal of A. AOP learning models, by contrast, would be sensi-
tive to the modification. According to both models AOP1 and
AOP2, participants should infer from the repeated decision-
making phase that EV(B) � 100. As the contingencies between
doL and B were highly similar [P(B�doL)Chain � .6, and
P(B�doL)CC � .7], the removal of A would have the same quali-
tative implications for the expected values of doL: EV(doL�A
removed)Chain � 60, and EV(doL�A removed)CC � 70. As these
expected values are higher than the expected value of doW (40), a
preference for doL is predicted in both conditions. Note that there
is no difference between AOP1 and AOP2, as B is the only
outcome variable after the removal of A.

Results and Discussion

The upper left part of Table 4 depicts participants’ choices for
the repeated decision-making phase. Decision makers exhibited a
clear preference for option doL in this phase. Separate ANOVAs
for options doL and doW revealed no differences between condi-
tions (both ps � .20). A clear difference between conditions was
observed in the test phase after the removal of A (see Table 4,
upper right part). Participants chose doW more often in the chain
condition than in the common cause condition, t(46) � 2.83, p �
.01. Conversely, the mean of doL choices was higher in the
common cause condition than in the causal chain condition,
t(46) � 2.72, p � .01. The fact that participants in the common
cause condition exhibited only a slight preference for doL over
doW might be due to a trade-off between mean and variance (i.e.,
opting for doL gives 100 points with p � .7, whereas doW results
in 50 points with p � .8).

Participants’ expected value estimates were consistent with their
choices (see Table 4, middle part). An ANOVA for the estimates
in the test phase with option (doL vs. doW) as a within-participants
factor, and causal model (causal chain vs. common cause) as a
between-participants factor, resulted in the expected interaction
effect, F(1, 46) � 5.69, p � .05, MSE � 768.3. In both conditions,
participants realized that the removal of variable A would decrease
the expected value of option doL. Crucially, they were sensitive to
the fact that the amount of decrease depended on the underlying
causal structure. An ANOVA for ratings of doL with phase (before
vs. after removal of A) as a within-participants factor, and condi-
tion (causal chain vs. common cause) as a between-participants
factor, resulted in a significant main effect of removal, F(1, 46) �
198.6, p � .01, and a significant interaction, F(1, 46) � 10.6, p �
.01, MSE � 996.5. Participants gave lower estimates for doL in the
causal chain than in the common cause condition, t(46) � 2.69,
p � .01. There were no differences between conditions with
respect to doW (F � 1).

Figure 6. Causal structures and feedback in Experiment 3. Squares indicate
possible actions, and circles indicate outcome variables. Numbers in graphs
represent probabilities and generated payoffs, respectively. In the test phase,
variable A is removed from the causal system. In the causal chain condition,
the causally expected value of action doL decreases to zero, making doW the
better option. In the common cause condition, the causally expected value of
action doL also decreases, but it remains the option with the highest expected
value. No feedback about outcomes and payoff was provided in the test phase.
Prob � probability; EV � expected value.
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Finally, we analyzed the causal models drawn by the partic-
ipants (see Table 4, lower part). Unexpectedly, a number of
participants indicated that doL is a common cause (i.e.,
A4doL3B) and that there is a direct relation A3B (i.e., causal
overdetermination). Although not very parsimonious, this hy-
pothesis is actually not inconsistent with the observations in the
common cause condition. The exactly correct model was drawn
by 33% of the participants. Together with the participants
assuming causal overdetermination in the common cause con-
dition, 52% of the decision makers induced a causal model that
was consistent with the obtained feedback. The rest, however,
drew a model that was inconsistent with the observations made.
This finding indicates that not all participants inferred the correct
causal model underlying the decision problem (see the General
Discussion). However, we also suspect that the free elicitation
procedure was more difficult for participants than the forced-
choice task used in Experiment 2.

Follow-up analyses revealed a substantial convergence between
participants’ choices, expected value estimates, and causal model
hypotheses. Participants assuming a model with a common cause
(regardless of the true underlying model) chose doL more often
than participants assuming a causal chain model (MdoL�CC � 5.48,
SEM � 0.66; MdoL�Chain � 1.43, SEM � 0.64), t(46) � 4.25, p �
.01, and they assumed doL to be more effective despite the re-
moval of A (MdoL�CC � 68.2, SEM � 4.02; MdoL�Chain � 9.32,
SEM � 6.15), t(46) � 6.66, p � .01.

Overall, these results demonstrate that participants were sen-
sitive to the causal structure of the decision problem. Many
decision makers seemed to have spontaneously induced a causal
model representation, which allowed them to adapt their choice
behavior when variable A was removed from the system. Like
the results of Experiment 2, the differential choices and judg-
ments cannot be explained by accounts assuming that people
merely learn and represent contingencies observed in the data.

General Discussion

In the present experiments, we studied the role of causal infer-
ence in repeated decision making. The results provide strong
evidence that decision makers are sensitive to the causal texture of
decision problems, induce causal models, and use this knowledge
to adapt their choice behavior when being confronted with changes

in the decision context. They did so even though they were never
instructed to engage in causal reasoning but only to maximize a
certain payoff variable.

Experiment 1 demonstrated how the consequences of deci-
sions are evaluated relative to existing beliefs about causal
structure. After making a number of decisions whose feedback
could be used to estimate the causal models’ parameters and
revise structure hypotheses, participants were confronted with a
new set of options. Despite identical learning experience, they
chose different options, estimated different expected values,
and made different causal model assumptions. Experiments 2
and 3 showed that many participants spontaneously induced a
causal model of the decision problem, although their instructed
goal was to maximize the state of a certain payoff variable.
They acquired causal knowledge and adapted their choice be-
havior when the decision task changed, even though interven-
tions and causal relations were probabilistic.

However, the results also show that not all decision makers
spontaneously induce causal model representations. For example,
the causal models drawn by participants in Experiment 3 indicate
that only about half of them acquired a causal model that was a
veridical representation of the underlying causal structure. Some
seem to have acquired a causal model representation that was
wrong—but that still guided their decisions. For about 40% of
participants, their assumed causal model and their choices as well
as their estimates about expected values were not coherent with
each other. Three of these people neither changed their choices in
the test phase nor did they revise their expected values, indicating
that they engaged in mere action-payoff learning. The remaining
participants reacted to the removal of a variable from the system
by shifting their behavior and reducing their estimated payoffs for
the affected action. There was no apparent difference between
conditions for these people, which indicates that they probably
engaged in some kind of action-outcome-payoff learning.

In sum, the results show that a majority of participants engaged
in causal induction during repeated decision making, but a con-
siderable number of participants acquired other types of represen-
tations. The reluctance of these participants to induce a causal
representation might be rooted in explicitly instructing participants
to maximize the state of the payoff variable. It simply may not
have occurred to these participants that acquiring a causal repre-

Table 4
Mean Number of Choices (�SEM), Expected Value Estimates (�SEM), and Causal Model Drawings in Experiment 3

Dependent
variable Condition

Repeated decision-making phase (100 trials) Test phase (10 trials)

doL doW no do doL doW no do

Choices Causal chain 73.6 (3.4) 21.7 (2.8) 4.7 (1.2) 2.8 (0.7) 7.2 (0.7) 0.07 (0.06)
Common cause 79.3 (3.0) 17.9 (2.7) 2.8 (0.9) 5.5 (0.7) 4.5 (0.7) 0.0 (0.0)

Expected values Causal chain 149.4 (5.4) 45.6 (3.8) 37.6 (7.4) 40.6 (4.5)
Common cause 137.1 (5.9) 44.1 (2.5) 67.3 (8.2) 43.3 (2.8)

Causal chain Common cause Common cause � chain Other model

Causal model task Causal chain 10 6 4 4
Common cause 4 6 9 5

Note. Actions “doL” and “doW” refer to the choices people could take (see Figure 6); “no do” denotes the decision to not take any action.
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sentation may turn out to be useful later on. In addition, attentional
factors may have contributed to their reluctance. Being focused on
maximizing the payoff, they may not have paid attention to the
cues indicating the underlying causal structure.5

Theoretical Implications

Our findings challenge accounts that neglect the role of causal
inference in decision making. Models that only encode the ex-
pected values of options cannot account for the results, since the
intermediate outcome variables that make the crucial difference
between the conditions are not represented. Accounts that repre-
sent the outcome variables and their associations to options, on the
one hand, and payoffs, on the other hand, are sensitive to changes
in causal structures and predict that participants will react to them.
However, as detailed in the specific predictions for each experi-
ment, such accounts cannot explain the diverging choices and
estimates participants made.

A propositional account of associative learning (De Houwer,
2009; Mitchell, De Houwer, & Lovibond, 2009), which assumes
that the formation of associative links is mediated through prop-
ositions, may be extended to explain these findings. According to
this approach, associative learning is not automatic, but effortful,
and requires conscious awareness and cognitive resources. In
contrast to classical associative learning models, such an account
allows learning to be influenced by verbal instructions and abstract
knowledge. Applied to the current experiments, such an approach
may assume that people use the available cues to causal structure
(e.g., the instructed causal model in Experiment 1 or the temporal
and statistical information in Experiments 2 and 3) to induce
propositions referring to the causal relations underlying the deci-
sion problem. Such an account would be very similar to a causal
model account, as it also assumes that the formation of links
between events results from controlled reasoning processes.

It is also important to note that reinforcement learning models
allow to describe repeated decision making in many areas (see
Newell, Lagnado, & Shanks, 2007, for an overview). For example,
choices between gambles with different payoff distributions can be
captured by Barron and Erev’s (2003) value assessment model.
Decisions based on multiple cues can be modeled as
reinforcement-based learning of predictive validities of cues
(Newell et al., 2007). Reinforcement learning can also be applied
to learning among decision-making strategies (e.g., decisions
based on single vs. multiple cues; Erev & Barron, 2005; Rieskamp
& Otto, 2006). Decision making with respect to causal systems,
however, seems not to be adequately captured by these models, as
they lack the expressive power to represent causal relations in the
environment.

Our findings support causal model theories of learning and
decision making (Sloman, 2005; Sloman & Hagmayer, 2006;
Waldmann, 1996; Waldmann & Holyoak, 1992) and causal Bayes
net accounts (Griffiths & Tenenbaum, 2005; Pearl, 2000). The
results complement previous findings, demonstrating that decision
makers use causal models and causal inference when making
simple one-shot decisions (Hagmayer & Sloman, 2009) and when
predicting the effects of causal interventions (Meder et al., 2008,
2009; Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005).

The Role of Causal Models in Decision Analysis

We have argued that people develop an intuitive notion of the
causal structure of decision problems and induce causal model
representations of a choice task to support decision making. Sim-
ilar ideas are found in other fields, including philosophy, artificial
intelligence, and decision theory.

One common approach in decision analysis is to construct
decision trees representing the available courses of action, their
consequential outcomes and the associated probabilities, and the
resulting payoffs. But more important is what such trees do not
represent, namely, the exact nature of the causal dependencies in
the domain and the causal relations between actions and domain
variables. Consider Experiment 3, which contrasted a causal chain
with a common cause model. Figure 7a shows two decision trees
that one could construct from the feedback that participants expe-
rienced in the initial repeated decision-making phase (cf. Figure 6).
While such trees can sometimes provide a compact graphical
representation of the decision task, they lack the expressive power
and inference mechanisms to evaluate changes of the decision
problem. Since the trees do not encode how option doL leads to the
occurrence of both A and B, it is not clear how we can construct the
truncated trees (see Figure 7b) from the original trees (see Fig-
ure 7a). A causal model representation provides the necessary
semantics to express causal interdependencies, thereby enabling
inferences about novel situations. For example, one may argue that
the decision tree of the chain model should express the dependency
between A and B (e.g., by having separate nodes for A and B,
where A is followed by B), but to generate such a tree we must
have already engaged in causal learning in order to realize this
particular causal dependency. In short, we can construct decision
trees from causal models, but not vice versa.

While classical decision trees do not explicitly take causal
structure into account, other approaches bear a closer resemblance
to our ideas. In particular, so-called influence diagrams (Dawid,
2002; Howard & Matheson, 1984/2005; see also Pearl, 2005) have
been used to introduce causal knowledge to decision analysis.
Classical influence diagrams are similar to Bayesian networks in
that they are also based on a graphical modeling approach using
directed acyclic graphs. However, typically, the focus is not on
probabilistic inferences but is on modeling various types of deci-
sion problems with the goal of evaluating the consequences of
decisions in terms of expected utilities. Influence diagrams can
contain different types of nodes, including decision nodes, and the
arcs connecting these nodes do not necessarily represent causal
relations (Howard & Matheson, 1984/2005). Thus, contrary to
causal Bayesian networks, influence diagrams do not aim to model
the causal structure of a domain, and the decisions do not neces-
sarily refer to causal interventions.

More recent research along these lines (Dawid, 2002; see also
Pearl, 2000; Spirtes et al., 1993) has aimed to connect causal
models with influence diagrams to provide general semantics for

5 Several studies have shown that awareness and learning are tightly
connected to each other (see Shanks, 2010, for a recent review). As
attentional factors seem to influence even very basic learning processes
(e.g., classical conditioning), it is plausible that the induction of rather
complex causal models cannot take place without the allocation of atten-
tional resources.
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causal decision problems. Dawid (2002) has provided a detailed
treatment of how causal Bayesian networks can be augmented with
decision nodes and strategy variables for causal modeling of
decision problems. The advantage of this approach is that we
preserve the characteristic feature of causal models, namely, the
capacity to encode conditional independence properties of joint
probability distributions, while, at the same time, broadening the
models’ scope to decision analysis.

Limits of Causal Induction in Decision Making

Causal induction during repeated decision making may be lim-
ited by a number of factors. First, the experienced feedback must
enable the decision maker to discover the underlying causal struc-
ture. Thus, feedback on the state of the variables within the system
and cues to causal structure must be available (Lagnado et al.,
2007). Impoverished outcome feedback pertaining only to statis-
tical relations among actions and outcomes is not sufficient to
build up elaborate causal model representations that go beyond
action-outcome-payoff contingencies. This idea is consistent with
research on control tasks (cf. Osman, 2010), which usually found

that people mainly learned to control the system by learning
contingencies between actions and outcomes.

Second, the causal model representation must be useful for the
decision maker. For example, you can learn to use your washing
machine or TV set without inducing a sophisticated causal model
of the internal structure of the machine. In this case, learning
action-outcome contingencies is sufficient. However, the situation
is different when something happens to the causal system, such as
a breakdown of a mechanical or electronic part. In this case,
achieving a goal, such as repairing the machine, will require
knowledge of the causal structure. Thus, the usefulness of causal
model representations is contingent on an agent’s goals and task
demands.

Third, with an increasing complexity of the decision problem,
the induction of causal models becomes more difficult, and data
alone are rarely sufficient. In these cases, previous causal knowl-
edge about the domain becomes crucial. Given a certain amount of
prior knowledge, even sparse and noisy data may be sufficient to
determine the underlying causal structure (Griffiths, Baraff, &
Tenenbaum, 2004). In addition, learners may exploit a number of
cues to causality, such as temporal order or knowledge communi-

Figure 7. Causal models and possible decision trees in Experiment 3: (a) causal models and decision trees of
the initial repeated decision-making phase and (b) modified causal models and decision trees in the test phase,
in which variable A is removed from the causal system.
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cated through social learning. For example, fortunately, young
doctors must not learn about the causal structure of the human
body by experience, but they receive this information from teach-
ers and textbooks.

Directions for Future Research

One may suspect that the use of causal knowledge in decision
making is limited to the relatively simple problems examined here.
However, there is a growing body of evidence indicating that this
is not the case. For example, causal considerations seem to also
play an important role in psychodiagnostic decision making (Ahn,
Proctor, & Flanagan, 2009; de Kwaadsteniet, Hagmayer, Krol, &
Witteman, 2010; Kim & Ahn, 2002; Kim & LoSavio, 2009). Also,
when experts cannot identify the best solution immediately, they
tend to construct simplified models of the domain to evaluate
potential courses of action (Klein, 1998). Thus, the flexibility and
adaptivity of causal model representations seems to pay off in
naturalistic decision-making contexts. Future research will need to
further explore the conditions under which causal models are
acquired, revised, and used in decision making.
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Appendix

Instructions for Experiments 1–3 (Translated From German)

Experiment 1

Instructions initial repeated decision-making phase: Com-
mon cause condition. Imagine the following situation: An
animal protection organization has stolen mice from a genetic
engineering laboratory. The mice were genetically modified to
investigate the relation between certain genes and growth. To this
end, mice were bred whose growth genes are inactive.

However, the genes can be activated through so-called
“messenger-RNA.” You have three different types of messenger-
RNA available: W-, V-, and U-RNA. The messenger-RNA can be
used to activate genes. It is possible that the messenger-RNA can
activate multiple genes or that the three genes can activate each
other.

Pilot work suggests that the messenger-RNA influences the
genes as follows: Injecting W-RNA activates genes A and B.
Injecting V-RNA activates gene B. Injecting U-RNA activates
genes B and C. However, this model is only a first hypothesis and
has not been validated yet.

Your task is to activate the genes by injecting individual mice
with U-, V-, or W-RNA in order to maximize the animals’ hormone
level. The higher the hormone level, the larger the animal will
grow and the longer it will live.

You have to decide, for 30 animals, whether and what type of
messenger-RNA you want to apply. At the beginning, you will
have to rely on trial and error to find out how the messenger-RNA
influences growth. For each animal, you will receive feedback on
which genes have been activated and how the hormone level
changed. Soon you will be able to choose the messenger-RNA that
will maximally increase the growth-hormone level of an animal.

Instructions repeated decision-making phase: Causal chain
condition. Imagine the following situation: An animal protec-
tion organization has stolen mice from a genetic engineering
laboratory. The mice were genetically modified to investigate the
relation between certain genes and growth. To this end, mice were
bred whose growth genes are inactive.

However, the genes can be activated through so-called
“messenger-RNA.” You have three different types of messenger-
RNA available: W-, V-, and U-RNA. The messenger-RNA can be
used to activate genes. It is possible that the messenger-RNA can
activate multiple genes or that the three genes can activate each
other.

Pilot work suggests that the messenger-RNA influence the
genes as follows: Injecting W-RNA activates gene A, which, in
turn, will activate gene B. Injecting V-RNA directly activates gene
B. Injecting U-RNA activates gene C, which, in turn, will activate
gene B. However, this model is only a first hypothesis and has not
been validated yet.

Your task is to activate the genes by injecting individual mice
with U-, V-, or W-RNA in order to maximize the animals’ hormone
level. The higher the hormone level, the larger the animal will
grow and the longer it will live.

You have to decide, for 30 animals, whether and what type of
messenger-RNA you want to apply. At the beginning, you will
have to rely on trial and error to find out how the messenger-RNA
influences growth. For each animal, you will receive feedback on
which genes have been activated and how the hormone level
changed. Soon you will be able to choose the messenger-RNA that
will maximally increase the growth-hormone level of an animal.

Instructions test phase. (The test phase instructions were
identical for both conditions.) After you have successfully
treated the initial 30 mice, your task is to treat 10 further mice,
which have also been stolen from the genetic engineering labora-
tory. Unfortunately, you have exhausted your supplies of U-, V-,
and W-RNA. However, a colleague provides you with A-RNA,
which specifically activates gene A, and C-RNA, which specifi-
cally activates gene C. Your task is to maximize the level of the
growth hormone in the individual animals by applying these
messenger-RNA.

Attention: You will receive no feedback regarding the outcome
of your decision on the hormone level. Nevertheless, you should
maximize the hormone level of each animal.

(Appendix continues)
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Experiment 2

Instructions were identical in all three conditions (common
cause 1, common cause 2, causal chain).

Instructions initial repeated decision-making phase. Imag-
ine the following situation: You are working in a laboratory
producing vaccine against deadly diseases. These vaccines are
produced with the help of genetically modified bacteria. The
bacteria have been equipped with two yeast genes (genes A and B).
If these genes are activated, the bacteria produce the vaccine.

For safety reasons, the genes are inactive by default. The people
working in the laboratory have to activate the genes through
so-called “trigger substances.” These trigger substances can acti-
vate individual genes as well as multiple genes. Recently, it has
also been discovered that the activity of a gene can activate other
genes. In this case, the trigger substance activates one individual
gene, which then triggers the activation of the other gene.

At this point in time, two trigger substances are available:
Trigger U and Trigger W. However, the trigger substances do not
always activate the genes. Other substances are currently under
development, which will enable a more reliable and specific acti-
vation of genes. These substances might be available at a later
point in time.

Your task is to maximize the amount of vaccine through apply-
ing the trigger substances.

To this end, you will be presented with 100 petri dishes one after
another, with each petri dish containing the same number of
bacteria. For every dish, you have to decide whether and which
trigger substance to apply. After making a decision, you will
receive feedback regarding which genes have been activated and
how much vaccine has been produced.

In the beginning, you will have to rely on trial and error to find
out how the trigger substances affect the genes, whether the genes
are interrelated, and how much vaccine is produced. However,
after some time, you will be able to choose the trigger that will
maximize the amount of vaccine.

After you have made your decisions for the 100 petri dishes,
new trigger substances will become available.

Instructions test phase. After you have successfully handled
the 100 petri dishes, a new trigger substance, Trigger A, is at your
disposal. This trigger activates, with 100% certainty, gene A. That
means: If gene A also influences the other gene, the trigger will
first activate gene A, which, in turn, might activate gene B. If gene
A does not influence gene B, then the trigger will only activate
gene A.

Your task is to decide for 10 additional petri dishes, which of the
three trigger substances you would like to apply: U, W, or A. As
before, your decision should maximize the amount of produced
vaccine. Thus, carefully consider which trigger to apply.

Attention: You will receive no feedback regarding the outcome
of your decision on the hormone level. Nevertheless, you should
maximize the hormone level of each animal.

Experiment 3

Instructions were identical in both conditions (common cause,
causal chain).

Instructions initial repeated causal decision-making phase.
Imagine the following situation: You are working in a laboratory
producing vaccine against deadly diseases. These vaccines are
produced with the help of genetically modified bacteria. The
bacteria have been equipped with three yeast genes (genes A, B,
and C). If these genes are activated, the bacteria produce the
vaccine.

For safety reasons, the genes are inactive by default. The people
working in the laboratory have to activate the genes through
so-called “trigger substances.” These trigger substances can acti-
vate individual genes as well as multiple genes. Recently, it has
also been discovered that the activity of one gene can activate
another gene. In this case, the trigger substance activates one
individual gene, which then triggers the activation of the other
gene.

At this point in time, two trigger substances are available:
Trigger L and Trigger W. However, the trigger substances do not
always activate the genes.

Your task is to maximize the amount of produced vaccine
through applying the trigger substances.

To this end, you will be presented with 100 petri dishes one after
another, with each petri dish containing the same number of
bacteria. For every dish, you have to decide whether and which
trigger substance to apply. After making a decision, you will
receive feedback regarding which genes have been activated and
how much vaccine has been produced.

In the beginning, you will have to rely on trial and error to find
out how the trigger substances affect the genes, whether the genes
are interrelated, and how much vaccine is produced. However,
after some time you will be able to choose the trigger that will
maximize the amount of produced vaccine.

After you have made your decisions for the 100 petri dishes, you
will receive new instructions.

Instructions test phase. After you have successfully handled
the 100 petri dishes, your task is to apply the trigger substances to
some further bacteria. In contrast to the bacteria you have seen
before, these bacteria do not possess gene A. This gene is not
present in these bacteria and therefore cannot be activated. How-
ever, the bacteria possess genes B and C.

Your task is to decide for 10 additional petri dishes with these
new bacteria, which trigger substance (L or W) you would like to
apply. As before, your decision should maximize the amount of
produced vaccine. Thus, carefully consider which trigger to apply.

Attention: You will receive no feedback regarding the outcome
of your decision on the hormone level.
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