
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier.com/locate/cognit

Original Articles

Stepwise versus globally optimal search in children and adults
Björn Medera,b,c,⁎,1, Jonathan D. Nelsona,d, Matt Jonese, Azzurra Ruggeria,f
aMPRG iSearch, Max Planck Institute for Human Development, Berlin, Germany
b Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
cUniversity of Erfurt, Germany
dUniversity of Surrey, United Kingdom
eUniversity of Colorado Boulder, United States
f Technical University of Munich, Germany

A R T I C L E I N F O

Keywords:
Sequential search
Information gain
Stepwise-optimal methods
20-questions game
Split-half heuristic
Entropy
Search efficiency
Planning

A B S T R A C T

How do children and adults search for information when stepwise-optimal strategies fail to identify the most
efficient query? The value of questions is often measured in terms of stepwise information gain (expected re-
duction of entropy on the next time step) or other stepwise-optimal methods. However, such myopic models are
not guaranteed to identify the most efficient sequence of questions, that is, the shortest path to the solution. In
two experiments we contrast stepwise methods with globally optimal strategies and study how younger children
(around age 8, N=52), older children (around age 10, N=99), and adults (N=101) search in a 20-questions
game where planning ahead is required to identify the most efficient first question. Children searched as effi-
ciently as adults, but also as myopically. Both children and adults tended to rely on heuristic stepwise-optimal
strategies, focusing primarily on questions’ implications for the next time step, rather than planning ahead.

1. Introduction

From children actively learning about the world, to the control of
eye movements in visual perception, to a doctor running tests for
medical diagnosis—humans are information foragers. Any compre-
hensive account of cognition and behavior must therefore explain not
only how humans learn from observed data, but also how they actively
search for relevant information.

Different metrics for quantifying the value of queries (such as
questions, medical tests, or eye movements) have been suggested in
statistics, computer science, philosophy, and psychology (for reviews,
see Coenen, Nelson, & Gureckis, 2018; Crupi, Nelson, Meder, Cevolani,
& Tentori, 2018; Nelson, 2005; Settles, 2010). These metrics measure,
for instance, how much uncertainty is reduced (Lindley, 1956), how
much classification accuracy is improved (Baron, 1985), or how much a
piece of information changes beliefs (Wells & Lindsay, 1980). They
serve as candidate normative or descriptive models in different fields,
including developmental psychology (Nelson, Divjak, Gudmundsdottir,
Martignon, & Meder, 2014; Ruggeri, Lombrozo, Griffiths, & Xu, 2016;
Ruggeri, Sim, & Xu, 2017), vision research (Najemnik & Geisler, 2005;
Nelson & Cottrell, 2007), and higher level cognition (Bramley, Lagnado,
& Speekenbrink, 2015; Markant & Gureckis, 2014; Meder & Nelson,

2012; Nelson, McKenzie, Cottrell, & J., 2010; Oaksford & Chater, 1994;
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Wu, Meder,
Filimon, & Nelson, 2017).

Typically, these models are implemented in a stepwise-optimal way,
meaning that they consider a query’s implications only for the
immediate next time step. Because they disregard future queries and do
not plan ahead, they are also referred to as greedy or myopic models.
Obtaining information in a stepwise-optimal fashion is often an efficient
approach to information acquisition, but it is not generally guaranteed
to identify the most efficient strategy when multiple queries can be
conducted (Hyafil & Rivest, 1976; Nelson, Meder, & Jones, 2018). This
has important theoretical implications for both computational-level and
mechanistic analyses of human search behavior. At the computational
level, almost all psychological research to date has tacitly assumed that
sequential search is governed by the same normative principles that
govern one-shot scenarios, in which only a single piece of information
can be obtained (but see Bramley et al., 2015; Meier & Blair, 2013;
Nelson et al., 2018). At the mechanistic level, stepwise strategies
engage a fundamentally different form of cognitive processing than
methods that are sensitive to long-run efficiency, the former involving
valuation of individual queries and the latter requiring explicit planning
to evaluate alternative decision trees.
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The focus on stepwise-optimal strategies for information acquisition
sharply contrasts with the literature on reward-based tasks, where the
tension between immediate and long-term outcomes has long been
acknowledged and investigated from both computational and psycho-
logical perspectives (e.g., Bellman, 1957; Newell & Simon, 1959; Sutton
& Barto, 1998; Watkins & Dayan, 1992). One critical issue contributing
to this blind spot in the psychological literature on information acqui-
sition is the lack of a precise characterization of different search task
environments and the resulting implications for the performance of
alternative search strategies. From a computational perspective, long-
run considerations are critical to characterize and understand the op-
timality conditions of different methods for question selection. From a
psychological perspective, sequential search scenarios are particularly
critical to assess the efficiency of human search behavior and to what
extent people plan ahead when deciding what information to acquire.

In this paper, we directly contrast stepwise strategies with more
globally efficient strategies in sequential search situations. We first
provide a computational analysis of different search strategies in the
20-questions game, a search task widely used in developmental and
cognitive psychology. In this search task, the goal is to identify an
unknown target item by asking as few yes-no questions as possible. Our
analysis specifies and illustrates the conditions under which stepwise-
optimal strategies can be distinctly suboptimal when the goal of the
searcher is to minimize the expected number of questions needed to
identify the target item. We mathematically characterize the relation-
ships between different models of the value of information, such as
information gain (entropy reduction), and strategies for identifying the
target item with the minimum total number of queries. We contribute
code that can be used by other researchers to compute each question’s
efficiency in the 20-questions game and to identify environments in
which stepwise methods and efficiency considerations entail system-
atically different search behavior. We then present two studies in-
vestigating children’s and adults’ sequential search in a version of the
20-questions game in which it is necessary to plan at least two steps
ahead to determine which of two stepwise-optimal queries is more ef-
ficient in the long run. In this sense, we explore from a developmental
perspective to what extent searchers plan ahead to achieve high search
efficiency by considering what questions will be available later on.

2. Theoretical background

Models of the informational value of queries are also known as
Optimal Experimental Design (OED) theories (Nelson, 2005). They are
optimal in the sense that they maximize some information measure by
evaluating each query’s possible outcomes and their immediate im-
plications for the hypotheses considered. For instance, expected in-
formation gain (Lindley, 1956) values questions in accordance with the
expected reduction in uncertainty, as measured by Shannon (1948)
entropy. OED theories were initially envisioned for situations in which
just one query could be conducted, but they have since been applied in
a stepwise fashion to situations where multiple queries can be

conducted in series. A stepwise-optimal query is one that offers the
maximum expected informational value (e.g., maximum expected in-
formation gain) in the next time step, without regard for what sub-
sequent queries could be conducted.

However, crucially, a stepwise-optimal query is not necessarily the
best first query when multiple queries can be conducted, because the
feedback on one query affects and constrains the informativeness of
subsequent queries. Sequential search is particularly interesting from a
computational standpoint, because the problem of identifying the
globally optimal strategy is generally intractable (Hyafil & Rivest, 1976;
Nelson et al., 2018). From a psychological perspective, sequential
search relates to many real-world situations (e.g., medical diagnosis
involving multiple tests) and it is methodologically critical for differ-
entiating between competing descriptive and normative models of
human search.

2.1. Stepwise-optimal search in the 20-questions game

Fig. 1a shows a variant of the 20-questions game. In this search task,
the goal is to identify a randomly chosen target item (in this case, a
monster) with as few yes-no questions as possible (e.g., “Is the monster
green?” or “Is the monster round?”). If you could query one of the
features possessed by multiple items—color, shape or pattern—or query
an individual monster (Fig. 1b), what would you ask?

Formally, this search task has the following characteristics: (i)
uniform prior probabilities over the hypotheses (i.e., all monsters are
equally likely to be the target), (ii) only binary (yes-no) questions can
be asked, and (iii) deterministic likelihoods (i.e., each item either does
or does not have a given feature). Early studies of the 20-questions
game primarily focused on a qualitative distinction between different
types of questions, such as hypothesis-scanning questions, which target a
single item, and constraint-seeking questions, which pertain to features
shared by multiple items (Denney & Denney, 1973; Mosher & Hornsby,
1966; Siegler, 1977; Thornton, 1982). For instance, for the stimuli
shown in Fig. 1a, a hypothesis-scanning question would be “Does the
target monster have a crown?” whereas an example of a constraint-
seeking question is “Is the target monster green?” Because this quali-
tative distinction does not fully capture the varying usefulness of
questions, recent research has used stepwise information gain as a
graded measure for questions’ informativeness and as a benchmark for
evaluating human search behavior (Kachergis, Rhodes, & Gureckis,
2017; Nelson et al., 2014; Ruggeri et al., 2016; Ruggeri et al., 2017).

The idea behind information gain is that reduction in uncertainty,
measured via Shannon (1948) entropy, indicates the amount of in-
formation gained about the true hypothesis (the unknown target item).
The information gain of a question is the entropy in the hypothesis
space (i.e., the set of items considered and the associated probability
distribution) before asking that question minus the expected entropy
after asking that question (for related metrics based on different entropy
measures, see Crupi et al., 2018). In the 20-questions game, the as-
sumptions of uniform prior probabilities and deterministic likelihoods

b) Possible queriesa) Set of items

Fig. 1. A 20-questions game where stepwise-optimal information gain fails to identify the most efficient first question. (a) Item set (identifiers M1–M12 not shown
during experiments). (b) Possible first queries, targeting features (color, shape, pattern) shared by multiple items or present in individual items.
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imply all items that are consistent with the answers received thus far
are equally likely to be the target. Thus the prior entropy at each step is

nlog where n is the number of remaining items.2 For a given query Q,
let nyes denote the number of remaining items that have the queried
feature value (e.g., are green), and let nno denote the number that lack
that feature value (e.g., are blue). The expected information gain of a
question Q is then given by

= +Q n
n

n
n n

n
nIG( ) log log logyes

yes
no

no (1)

where IG is the expected information gain and the term in the brackets
is the expected entropy after asking the question. Selecting questions by
maximizing information gain in accordance with Eq. (1) reduces un-
certainty in a stepwise-optimal fashion (for an analysis of multistep
methods see Nelson et al., 2018).

2.2. Stepwise-optimal search and the split-half heuristic

Eq. (1) shows that stepwise information gain in the 20-questions
game is directly related to the split a question induces in the hypothesis
space (Navarro & Perfors, 2011; Nelson et al., 2014). Fig. 2a shows the
expected information gain of a question as a function of the split it
induces, expressed here as the proportion of items possessing the
queried feature. The information gain function has its maximum when
exactly half of the items possess the targeted feature, and it mono-
tonically decreases in both directions as the distribution becomes less
even. Accordingly, we define the splithalfiness of a question as

n n n nmin( / , / )yes no . This measure ranges from 0 to ½ and is mono-
tonically related to stepwise information gain for any fixed number of
items n. Given the monster features in Fig. 1, color and shape induce the
most balanced possible split (3:9, splithalfiness= .25) and thus tie for
the greatest stepwise information gain (0.811 bits). Asking about the
pattern and inquiring about an individual monster induce 2:10 and 1:11
splits (splithalfiness= .17 and .08), respectively, and therefore have
lower stepwise information gain (0.65 and 0.414 bits).

The close relationship between splithalfiness and stepwise in-
formation gain provides a rational basis for the split-half heuristic
(Nelson et al., 2014), which characterizes much of older children’s and
adults’ behavior when selecting among given questions in the 20-
questions game (Denney & Denney, 1973; Eimas, 1970; Nelson et al.,
2014; Siegler, 1977; Thornton, 1982). The split-half heuristic queries
the feature whose distribution comes as close as possible to a 50:50
split. By selecting the query with the greatest splithalfiness, the heur-
istic maximizes stepwise information gain without explicitly calculating
the underlying quantities in the information gain equation (i.e., prior
and posterior entropy). The split-half heuristic also maximizes several
other entropy-based measures (Crupi et al., 2018) and OED models
(Nelson et al., 2018).

2.3. The question of efficiency: stepwise-optimal versus globally optimal
strategies

Selecting questions in accordance with stepwise information gain is
not necessarily the most efficient strategy in the sense of minimizing the
expected total number of queries. From a computational standpoint, the
critical issue is whether there are limitations on the questions that can
be asked or whether arbitrary queries are possible (e.g., only questions
pertaining to a prespecified set of features or also questions pertaining
to arbitrary subsets, such as “Is it one of the three monsters M1, M2, or
M3?”). If arbitrary questions are allowed then one can always create a
maximally informative split at each stage of the search process, in
which case stepwise information gain is also the most efficient strategy

(Huffman, 1952). However, if arbitrary queries are not possible, step-
wise-optimal methods can be distinctly suboptimal in the long run. Due
to the limitations on queries (e.g., available features), it might not al-
ways be possible to ask a question that splits the remaining hypotheses
exactly or close to 50:50. Under these circumstances, choosing efficient
queries requires planning ahead by considering what questions would
be available later on, given each possible answer to the current ques-
tion.

Consider again Fig. 1. Both color and shape induce a 3:9 split and
therefore have the highest expected information gain (0.811 bits).
However, one of them is uniquely optimal with respect to the expected
number of questions needed to definitively identify the target, because
it allows for more informative queries on the second step. When
querying the color feature, the most likely outcome is that the monster
is blue, leaving nine candidate hypotheses. In this case, the most in-
formative follow-up question queries the pattern feature, which induces
a 2:7 split. By contrast, when querying the shape feature, the most
likely outcome is that nine round monsters remain. In this case, color
and pattern both pick out a single item (i.e., there are exactly one re-
maining green monster and one remaining spotted monster), and thus
the searcher can only ask a follow-up question that queries individual
monsters’ features.3

Computationally, determining the most efficient sequence of queries
corresponds to finding the binary question tree with the shortest ex-
pected path length—the globally optimal solution that minimizes the
expected number of queries. We define the expected path length for each
question Q as the expected total number of questions needed to identify
the target when a searcher begins with this question and chooses
globally optimally on subsequent steps. As mentioned above, this pro-
blem is generally intractable (Hyafil & Rivest, 1976), because the
number of possible trees grows superexponentially with the number of
available queries. For a moderate number of queries and items, the
optimal tree and expected path length of each question can be de-
termined through dynamic programming (Nelson et al., 2018).

Given each question’s expected path length, a given question Q’s
efficiency can be defined in terms of its expected path length reduction,
which is the reduction in the expected number of remaining questions
after asking Q, compared to the expected total number of questions
when starting with the globally optimal question (see Appendix B for
details). By definition, the expected path length reduction for all
questions ranges between 0 and 1, and the expected path length re-
duction for the globally optimal first question equals 1.

Table 1 contrasts questions’ usefulness for the 20-questions game in
Fig. 1a in terms of stepwise information gain, expected path length
(expected number of questions) and reduction thereof, illustrating how
the stepwise and global optimality metrics can diverge. First, the or-
dering given by expected path length is generally inconsistent with the
information gain ordering. Second, while the color and shape questions
tie for maximal information gain, the color feature is uniquely optimal
because it has a lower expected path length. Surprisingly, in terms of
expected path length the shape query is even worse than selecting one
of the 12 individual monsters at random and asking about it. Third, this
also illustrates that the common assumption that constraint-seeking
questions are superior to hypothesis-scanning questions does not al-
ways hold (for related issues in the case of unequal priors see Nelson
et al., 2018; Ruggeri et al., 2017).

Fig. 2b and c illustrate the divergence between stepwise-optimal
and globally optimal strategies in sequential search, assessed via si-
mulation of each strategy’s behavior. The baseline is provided by a
random strategy, which chooses in each time step with equal probability

2 The choice of base for the logarithm is arbitrary; we use base 2 throughout
this paper, in which case the unit is the bit.

3 If only three monsters remain after the first query, only hypothesis-scanning
questions inducing a 1:2 split can be asked, and all questions have identical
information gain and efficiency with the expected number of additional ques-
tions needed being 1 2

3 . For a formal proof see Nelson et al. (2018).
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among all informative questions (i.e., excluding redundant questions
targeting features possessed by all or no item, given what has been
learned up to that point). The stepwise-optimal strategy chooses at each
step the query with the highest stepwise information gain (ties are
broken randomly), mimicking a learner who uses the split-half heur-
istic. The globally optimal strategy selects questions in accordance with
their expected path length reduction (ties are again broken randomly);
that is, it directly minimizes the objective function (expected number of
queries). We used the environment shown in Fig. 1a (see also Table 3),
where in each round a random target was chosen and the strategy se-
lected questions until it had been identified. Fig. 2b shows the effi-
ciency of the three strategies, illustrating how stepwise information
gain falls short of the globally optimal strategy. Note that the globally
optimal strategy also achieves higher average information gain (aver-
aged over all steps in the game) than the stepwise-optimal strategy,
which greedily maximizes this quantity in each step (Fig. 2c).

2.4. Summary

In the 20-questions game, applying the split-half heuristic (i.e.,
querying a feature whose distribution comes as close as possible to a
50:50 split) enables searchers to identify the question with the highest
stepwise information gain. However, reducing uncertainty in a step-
wise-optimal fashion does not necessarily minimize the expected
number of questions needed to identify the true target item. Our ana-
lyses illustrate that stepwise information gain can be distinctly sub-
optimal in the long run, as stepwise-optimal methods only consider a
query’s implications for the immediate next time step and do not take

into account how a query’s outcome can affect the informativeness of
subsequent queries. This limitation is a function of both the search
strategy and of the task structure. Indeed, if it is possible within the task
to ask arbitrary questions at each time step (i.e., questions targeting any
arbitrary subset of items), then maximizing stepwise information gain is
also the most efficient strategy, because at each step of the inquiry a
maximally informative split can be created. However, often the avail-
able features and their distributions limit the available queries, there-
fore potentially introducing an efficiency gap between stepwise-optimal
and globally optimal strategies.

Our analyses show that task environments in which stepwise and
globally optimal strategies make diverging predictions can be particu-
larly informative regarding the efficiency of human search. Moreover,
quantifying questions’ usefulness in terms of the expected reduction in
path length provides a direct means to evaluate them with respect to
the objective function that searchers are asked to minimize, namely
solving the game by asking as few questions as possible.

3. Goals and scope of experiments

OED models such as stepwise information gain have been applied to
a variety of tasks in cognitive science investigating adult subjects’ be-
havior, including perceptual tasks (Najemnik & Geisler, 2005), cate-
gorization (Meder & Nelson, 2012; Nelson et al., 2010; Wu et al., 2017),
causal learning (Bramley et al., 2015; Steyvers et al., 2003), and hy-
pothesis testing (Coenen, Ruggeri, Bramley, & Gureckis, 2019; Navarro
& Perfors, 2011; Oaksford & Chater, 1994; Oaksford & Chater, 1996).
Similarly, recent developmental studies investigating children’s search

Fig. 2. Relationships among models and simulation of their performance. (a) Relation between the proportion of items possessing a feature and its stepwise expected
information gain. (b) Efficiency of different strategies in the environment of Fig. 1 (see also Table 3). (c) Average information gain per question asked. Box plots show
interquartile range with mean (diamond) and range (whiskers). Strategy performance based on 105 runs for each of the 12 target items.

Table 1
Initial Split, Expected Stepwise Information Gain, Expected Path Length (Expected Number of Questions) and Reduction Thereof for
Features in Fig. 1a.

Stepwise optimality metrics Global optimality metrics

Question Feature Initial split Information gain Path length Path length reduction

Q1 Color 3:9 0.811 4.583 1.000
Q2 Shape 3:9 0.811 5.083 0.500
Q3 Pattern 2:10 0.650 4.667 0.917
Q4–Q10 Monster M1–M7 1:11 0.414 4.833 0.750
Q11–Q15 Monster M8–M12 1:11 0.414 5.250 0.333
Q4–Q15 Random monster M1–M12 1:11 0.414 5.007 0.576

Note. Questions pertaining to individual monsters have different path lengths; “Random monster” gives the weighted mean across the
12 items (see Table 3 in Appendix A for details). In the behavioral experiments, assignment of queries Q1–Q3 to physical features of
color, shape, and pattern were counterbalanced across subjects.
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behavior in the 20-questions game from a computational perspective
have focused exclusively on stepwise-optimal methods (Kachergis et al.,
2017; Nelson et al., 2014; Ruggeri & Lombrozo, 2015; Ruggeri et al.,
2017). Although this research has advanced our understanding of the
behavioral and statistical principles underlying human information
search, there has been virtually no consideration of scenarios in which
stepwise methods are suboptimal with respect to search efficiency.

We conducted two behavioral experiments to investigate whether
and to what extent children and adults plan ahead in sequential search,
using a 20-questions game with the stimuli shown in Fig. 1. This task
environment directly contrasts stepwise methods with globally optimal
strategies, addressing the question of whether searchers would consider
possible subsequent queries in order to determine which of two step-
wise-optimal queries is more efficient (Table 1). By comparing the be-
havior of children of different age groups with that of adults we also
aimed to tap into the development of planning ahead and strategy use
in sequential information acquisition.

What is known about people’s capability to search efficiently when
stepwise-optimal and more globally optimal methods make diverging
predictions about queries’ usefulness? Although the conflict between
short- and long-run optimality has been recognized for decades in other
domains, such as reward-based learning and problem solving (Bellman,
1957; Newell & Simon, 1959), there is a lack of research on this
question in the context of pure information-acquisition tasks. Re-
searchers have either used one-shot search tasks, in which only a single
piece of information can be obtained (e.g., Nelson et al., 2010; Skov &
Sherman, 1986; Slowiaczek, Klayman, Sherman, & Skov, 1992; Trope &
Bassok, 1982), or have focused on stepwise-optimal methods to eval-
uate human search behavior when multiple pieces of information can
be obtained (Markant & Gureckis, 2014; Najemnik & Geisler, 2005;
Nelson et al., 2014; Oaksford & Chater, 1994; Oaksford & Chater, 1996;
Ruggeri & Lombrozo, 2015). A notable exception is the work by Meier
and Blair (2013), who used a probabilistic multiple-cue categorization
task to assess adults’ ability to learn the most efficient sequence of
queries. They used an experience-based search paradigm comprising
several hundred trials, where in each trial searchers could view up to
three features of a stimulus before making a classification decision. The
task environment was designed such that stepwise-optimal strategies
required 21

6 queries on average, whereas the globally optimal strategy
required exactly 2 queries. The key finding was that, over the course of
learning, searchers acquired a systematic preference to first query the
feature that ultimately led to higher efficiency, even though it was not
the most informative feature according to stepwise-optimal methods.
The learning curves show that searchers developed this preference only
after extensive experience with the search problem, based on dozens or
even hundreds of learning trials (see Supplementary Material of Meier
and Blair, 2013). These findings demonstrate that adult subjects can
harness their learning experience to identify the most efficient sequence
of queries, even when stepwise-optimal methods fail to identify the best
first question.

An important question that the literature to date has not addressed
is whether searchers can identify an efficient series of queries in a se-
quential search task performed only once. This situation strongly differs
from experience-based paradigms, in which searchers can repeatedly
interact with the problem to learn about the best search strategy. This is
a crucial distinction, because in experience-based tasks searchers could
learn the most efficient query through processes other than explicit
planning, for instance by reinforcement learning mechanisms (Sutton &
Barto, 1998). In this case, the number of queries serves as loss function
that the searcher seeks to minimize and the learned reward values
determine which feature is queried first, without the searcher ever
explicitly planning ahead or even necessarily recognizing why that
feature is most efficient (see General Discussion for details). In the
experiments we report, the search task was performed only once, and
therefore to solve the problem efficiently searchers had to plan ahead
by considering not only the immediate implications for the hypotheses

considered but also the consequences for subsequent queries. This si-
tuation aligns closely with the psychological literature on planning and
problem solving, where planning is often conceptualized as a search
through a space of interconnected states, traversing from an initial state
to a desired goal state by applying a sequence of operations that con-
nect the intermediate states (Morris & Ward, 2004; Newell & Simon,
1972). In the 20-questions game used here, the initial state corre-
sponded to not knowing which of the n monsters was the true target,
the goal state was knowing with certainty the true target monster, and
the operations that transformed the problem states were the questions
that could be asked.

There is a rich literature showing that healthy adults can plan ahead
in tasks with no uncertainty (e.g., Hayes-Roth & Hayes-Roth, 1979;
Newell & Simon, 1972; Shallice, 1982), such as the Tower of Hanoi and
London tasks. Developmental studies have also focused on tasks with
deterministic actions, such as Tower of Hanoi and London problems
(Bull, Espy, & Senn, 2004; Klahr & Robinson, 1981) or navigation and
maze tasks (Gardner & Rogoff, 1990; Völter & Call, 2014). For instance,
using a maze navigation task, Völter and Call (2014) found that 5-year-
olds planned up to two steps ahead when selecting the entry point for
the maze, whereas 4-year-olds tended to plan only one step ahead. This
research has helped map developmental trajectories in planning.
However, action selection and information foraging are psychologically
distinct processes, and planning a sequence of actions in a task with no
uncertainty is quite different from planning a tree of queries where the
goal is to resolve uncertainty. In fact, computational analyses of when
humans and other animals do or do not plan ahead suggest that task
uncertainty is a primary factor discouraging planning (Daw, Niv, &
Dayan, 2005).

A key goal of the present research was therefore to investigate
children’s and adults’ planning in a task of pure information acquisition
where outcomes are probabilistic. The 20-questions game provides an
ideal experimental paradigm for addressing this question from a de-
velopmental perspective because the statistical structure of the task
environment is much simpler than in probabilistic classification tasks
with unequal priors and probabilistic likelihoods (e.g., the proportion of
items possessing a particular feature value can be directly observed).

4. Experiment 1

4.1. Participants and design

Children (N=47) and adults (N=50) were recruited through the
subject pool of the Max Planck Institute for Human Development in
Berlin and tested individually in the laboratory. The study was ap-
proved by the Ethics Committee of the Max Planck Institute for Human
Development and written consent was obtained from all participants (in
the case of children from their legal guardian). Following previous re-
search, we targeted children of about 10 years of age, an age that has
been shown to be a critical stepping stone for question asking and in-
formation search (Mosher & Hornsby, 1966; Ruggeri & Feufel, 2015;
Ruggeri & Lombrozo, 2015; Ruggeri et al., 2016). Children and adults

Table 2
Participant demographics.

Age (years)

Age group N Female Mean Median SD

Exp. 1 10-year-olds 45 47% 10.40 10.33 1.24
Exp. 1 Adults 49 69% 43.94 44.92 5.87
Exp. 2 8-year-olds 52 48% 7.94 8.08 0.58
Exp. 2 10-year-olds 54 46% 10.40 10.25 0.80
Exp. 2 Adults 52 58% 35.01 35.12 11.32
Total Children 151 47% 9.55 9.67 1.47
Total Adults 101 63% 39.3 40.08 10.12
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were tested individually in separate sessions, which were videotaped
and coded later. Families received a flat fee of €10 for participating and
an average performance-based bonus of €2.79. Two children were ex-
cluded from the analyses because they indicated having accidentally
seen the target item; one adult was excluded because of missing con-
sent. Table 2 shows participant demographics; all Ns in figures and
tables refer to the sample size after excluding subjects.

4.2. Task environment

We used computer simulations to identify a set of items and feature
distributions in which stepwise information gain and equivalent stra-
tegies such as the split-half heuristic fail to identify the most efficient
first query. More specifically, the goal of these simulations was to
generate an environment in which two questions tie as most splithalfy,
although only one of those questions is globally optimal, and there is a
large difference between those two questions in their path length re-
duction. Two important analytical constraints guided the design of the
task environment: If there are fewer than three constraint-seeking
questions (i.e., features possessed by more than one item), or if there
are fewer than eight items (hypotheses), then both stepwise information
gain and the split-half heuristic invariably select a first question with
maximal expected path length reduction (or, equivalently, minimal
expected path length). Both constraints can be proven analytically
(Nelson et al., 2018), and they provide a lower bound on the size of any
environment that contrasts stepwise and long-run optimality. Since our
goal was to run the experiments with children of different ages, an
additional pragmatic constraint was to keep the problem tractable. We
therefore searched for environments with small numbers of items (up to
about 18, the fewer the better) and small numbers of constraint features
(up to about 6, the fewer the better).

The simulations identified an environment with 12 items and three
constraint-seeking questions, in which two questions (Q1 and Q2) are
equal in their splithalfiness and stepwise information gain, but one of
them is uniquely optimal in terms of efficiency: Q1 has an expected
path length reduction of 1, whereas Q2 has an expected reduction of
only 0.5 (Tables 1 and 3). The decision to have two questions with
equal splithalfiness was based on pilot studies indicating that adult
subjects have a strong preference to ask the most splithalfy question
even if that question is not the most efficient first query. We hoped that
being presented with two stepwise-optimal questions with the same
splithalfiness would encourage participants to look ahead to break the
tie. In addition, Q3 was designed to have a lower splithalfiness than Q2
(2:10 vs. 3:9) but higher path length reduction (0.917 vs. 0.5), which
enabled us to test whether considerations about efficiency can trump
splithalfiness. Accordingly, we chose as a dependent variable in the
experiments which first question was selected, because it is a more
precise measure than the actual number of questions required (which
varies a great deal according to the luck of the draw in individual
rounds of the game).

Given the analytical constraints stated above, this environment is
the simplest possible for our purposes in terms of the number of
available constraint questions. In terms of the number of items, the
simulations showed that having fewer items, although mathematically
possible, would come at the cost of a smaller difference in efficiency
between stepwise and globally optimal questions. Furthermore, 12
items is toward the lower range of the number of stimuli used in de-
velopmental studies to date, suggesting that it should be doable for
children. Note also that the difference in path length reduction between
Q1 and Q2 is quite large. The maximum possible difference is 1, which
occurs only when the inferior question is completely uninformative.
The difference of 0.5 in the present design implies that Q2 is only half as
useful as Q1 in terms of progress toward completing the task. The dif-
ference in the expected number of queries in our environment (0.5) is
also three times larger than in the experience-based search task used by

Meier and Blair (2013), where the difference was 1/6 (with 21
6 queries

for the stepwise-optimal strategy vs. 2 queries for the globally optimal
strategy). Because Meier and Blair found an effect of efficiency in their
task, the present design should be more than adequate to detect whe-
ther people are sensitive to long-run efficiency in a 20-questions task.

4.3. Procedure and materials

The materials consisted of decks of cards depicting 12 monsters
(Fig. 1a; Table 3 shows the canonical item-feature matrix underlying
our experiments). We created six different sets of cards by counter-
balancing the assignment of queries Q1 to Q3 to the physical features of
color, shape, and pattern. For each subject, we used two identical decks
of cards and a “magic machine” (operated by the experimenter) that
would produce music when two identical monster cards were placed
inside. The experimenter demonstrated how the machine works by
placing two identical monster cards in it (these monsters were created
only for that purpose and were not part of the monster sets used for the
game).

Each subject played one round of the 20-questions game (see
Appendix D for the complete experimental script). At the beginning of
the game, one deck was shuffled and randomly arranged in a ×3 4 grid
on a table. To ensure that subjects—especially children—knew the
feature distributions, they were asked to sort the cards according to the
induced split for each feature, in random order, and count the number
of monsters possessing each feature value. This exercise also served the
purpose of highlighting which questions would be available on the
second step if that feature was queried.

Subsequently, the second deck of monster cards was shuffled three
times by the experimenter, who then drew a random monster card and
placed it in the machine without revealing it to the subject. Subjects
were instructed to identify the matching monster in the first deck by
asking as few yes–no questions as possible. To incentivize efficient
search, subjects had to pay a €50-cent coin for each question, from an
initial endowment of ten €50-cent coins. At each stage of the search
process, the monsters ruled out by the previous question were removed
from the grid by the experimenter. When only one monster remained, it
was placed into the magic machine, which then activated.

For the first two queries, subjects could choose among three con-
straint-seeking questions (Q1, Q2, Q3; randomly assigned to the shape,
color, and pattern features) or query an individual monster. We refer to
this as the question-selection phase. Allowed queries were visualized
using four question cards (Fig. 1b). Importantly, the available questions
strongly differed in terms of expected path length reduction, with one of
the two 3:9 questions being uniquely optimal (Q1, see Table 1). From
Step 3 onward, subjects could ask arbitrary questions (e.g., “Does the
monster have something on his head?”). We refer to this as the question-
generation phase. While our primary focus is on selection of the first
question, this phase was included so that children could finish playing
the game; additionally, it provides information on age-related differ-
ences in the capability to generate useful questions. Note that partici-
pants were not initially informed that from the third query onward they
would be allowed to ask arbitrary questions. This was done to motivate
subjects to start the search process with the most efficient query.

4.4. Results

4.4.1. Model performance
Because searchers could ask arbitrary questions after the first two

queries, we implemented corresponding variants of the random, step-
wise-optimal, and globally optimal models. For the first two queries,
the random strategy selects randomly among the allowed queries, the
stepwise-optimal strategy chooses the maximum information gain
query (ties are broken randomly), and the globally optimal strategy
selects questions according to expected path length reduction under the
assumption that only predefined queries will be allowed (reflecting
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subjects’ lack of foreknowledge about the question-generation phase).
The subsequent question-generation phase was modeled by

creating, at each step of the search, an arbitrary instance of each pos-
sible split given the remaining items (e.g., with eight items there are
four possible unique and informative splits, namely 1:7, 2:6, 3:5, and
4:4). In the game, such questions could correspond to arbitrary subsets
(e.g., “Is it the monster with the pipe or the monster with the wings?”)
or queries pertaining to higher level features (e.g., “Does the monster
have something on its head?”). The random strategy selects among the
possible splits with equal probability (ignoring the difference in the
number of possible instantiations of each split), whereas the stepwise-
optimal and globally optimal strategies select the most splithalfy
question. Note that because arbitrary questions are allowed in this
phase, the stepwise-optimal strategy is also the globally optimal
strategy, such that both models achieve maximum stepwise information
gain and expected path length reduction during this phase.

Fig. 3a shows the average number of items left at each stage of the
search process for each model. The baseline is provided by the random
strategy. Throughout the search process, the globally optimal strategy
eliminates more items on average than the stepwise-optimal strategy.
Strategies’ overall efficiencies are shown in Fig. 4a (horizontal lines).
Note that the gap between the stepwise and global models is reduced
because of the question-generation phase; the difference in path length
reduction over the first two steps is greater. Performance in terms of
stepwise information gain is shown in Fig. 5. The globally optimal
strategy achieves higher information gain than the stepwise-optimal
strategy because it selects a more efficient question on the first step,

which enables higher information gain queries subsequently.

4.4.2. Efficiency of search
Fig. 3b shows how many items remained at each stage of the search

process for the subjects. Comparison of the two age groups shows that
on average children searched as efficiently as adults. Fig. 4a shows the
number of questions needed by each group to identify the target item.
Children searched as efficiently as adults; in fact, they needed slightly
fewer questions than adults. The difference in the number of questions
was not significant though (Mchildren= 4.18, 95% CI= [3.69, 4.66] vs.
Madults = 4.65, 95% CI= [4.19, 5.12], z=−1.47, p= .14, Wilcox-
on–Mann–Whitney test).

4.4.3. Selection of first question
Our primary dependent variable of interest was which question

searchers asked at the beginning of the game. Fig. 4b and c
shows the selection proportions for the question on the
first step.4 Choices for the first question differed from chance
for both adults ( = = < =N p w(3, 49) 25.5, .0001, .722 ), and children
( = = < =N p w(3, 45) 22.6, .0001, .712 ), with little difference
between age groups ( =p .09, Fisher’s exact test).

No searcher chose a hypothesis-scanning question as first query.

Fig. 3. Efficiency of search process. For each time step the average number of items remaining is shown, with subjects (and model runs) who already identified the
target treated as having one item remaining. Model performance is based on 105 simulations for each target item.
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Fig. 4. Efficiency (a) and selection proportions for first question (b, c) in Experiment 1. (a) Number of questions needed to identify the true target item. Horizontal
lines indicate mean performance of models, box plots show interquartile range with median (line), mean (diamond), and range (whiskers). (b) and (c) First questions
chosen by children and adults. Questions ordered by path length reduction, with the expected reduction of each question shown in square brackets. Numbers on top
of bars show induced splits.

4 We treat the 12 hypothesis-scanning questions pertaining to individual
monsters as one question type, rather than individual queries, such that there
are four possible first queries.
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Both children’s ( = = = =N p w(2, 45) 5.73, .06, .362 ) and adults’
( = = = =N p w(2, 49) 6.9, .03, .382 ) selections differed from choosing
randomly among the three constraint questions. Both age groups showed a
preference for the two most splithalfy questions (3:9 split, Q1 and Q2),
which together accounted for 75.5% of choices in adults (24.5% Q1, 51%
Q2) and 82.2% in children (46.7% Q1, 35.6% Q2). For children this pro-
portion differed from randomly choosing among the three constraint
questions ( =p .03, binomial test against 2/3 chance level), but not for
adults ( =p .23). However, there was no difference between age groups
( =p .46, Fisher’s exact test).

Considering only subjects who started out with one of the two 3:9
questions (37 children and 37 adults), there was a marginal difference
between age groups ( = = = =N p(1, 74) 3.5, .06, .222 ). Children’s
preference for the more efficient 3:9 question, Q1, did not differ from
chance ( =p .51, binomial test), but adults were more likely to select the
less efficient 3:9 question, Q2 ( =p .05).

These results indicate that children’s efficiency was at least on par
with adults’, but generally both children and adults showed little to no
sensitivity to planning ahead or to questions’ efficiency. Question se-
lection seemed to be primarily determined by the induced split and
stepwise information gain (for children) or by arbitrary selection
among constraint questions (for adults).

4.4.4. Information gain analysis
We computed for each subject the mean stepwise information

gain achieved in the question-selection phase (initial two
questions, Fig. 5a), in the question-generation phase (all
but the first two questions, Fig. 5b), and across all questions
(Fig. 5c). There were no differences between groups
for the first two questions ( = =M 0.72, 95% CI [0.7, 0.75]children vs.

= = = =M z p0.73, 95% CI [0.7, 0.75], 0.21, .21adults ; here and in the
following, by Wilcoxon-Mann-Whitney test). However, in the question-
generation phase (Fig. 5b), where stepwise information gain is also the
most efficient strategy, adults tended to generate more informative
questions than children ( = =M 0.86, 95% CI [0.81, 0.91]children vs.

= = = = =M z p r0.92, 95% CI [0.88, 0.95], 1.83, .07, .19adults ).
The developmental difference in question generation is consistent with

recent studies showing that children can select the most informative of two
questions already at around age 5 (Ruggeri et al., 2017), although they still
have difficulties generating informative questions until around age 10
(Ruggeri & Feufel, 2015; Ruggeri & Lombrozo, 2015; Ruggeri et al., 2017).
Across all questions, adults also achieved higher information gain than
children (Mchildren=0.79, 95% CI= [0.76, 0.82] vs. Madults=0.83, 95%
CI=[0.81, 0.85], z=−2.33, p=.02, r=.24).

5. Experiment 2

Three key findings emerged from Experiment 1. First, 10-year-olds
searched as efficiently as adult subjects. Second, regardless of age,
question selection seemed to be primarily driven by the induced split;
even in our task where two questions tied for the highest initial split,
searchers did not break the tie in favor of path length reduction. Third,
in the question-generation phase, adults performed better than chil-
dren, consistent with related findings from the developmental literature
(Ruggeri & Feufel, 2015; Ruggeri & Lombrozo, 2015; Ruggeri et al.,
2016).

The purpose of Experiment 2 was twofold. First, we introduced
another test phase to assess more explicitly and directly whether chil-
dren and adults are sensitive to questions’ efficiency. The game play
was as in Experiment 1. However, prior to actually playing the game,
subjects were presented with only two queries at a time (e.g., Q1 and
Q2, both of which induce a 3:9 split, but Q1 has twice the expected path
length reduction) and were asked to judge which one was better.
Second, we additionally recruited children around age 8, to see whether
younger children would search as efficiently as older children and
adults in our task. We did not aim to test even younger children though,
because it has been found that children younger than 7 struggle with
generating useful questions (Legare, Mills, Souza, Plummer, & Yasskin,
2013; Ruggeri, Walker, Lombrozo, & Gopnik, 2018), and the current
paradigm might have been too complicated for them.

5.1. Participants and design

We tested younger children around age 8 years (N=59), older
children around age 10 years (N=61), and adults (N=53). Table 2
provides detailed information on participant demographics. The Ethics
Committee of the Max Planck Institute for Human Development ap-
proved the study and consent was obtained from all participants (in the
case of children from their legal guardian). Subjects were recruited and
tested at the Museum für Naturkunde (Natural History Museum) in
Berlin and received an average performance-based payoff of €2.83.
Note that it is not possible to know a child’s exact age when ap-
proaching them in a museum, so it was not always possible to target
children who were close to a very specific age (although we did request
and record exact ages once they were recruited). We address this issue
below by conducting an aggregate analysis that treats age as a con-
tinuous variable (Section 6). All subjects were tested individually; ses-
sions were videotaped and coded later. Fifteen subjects were excluded
from the analyses: Two children were excluded because of missing
consent, four children indicated having seen the target item, and eight
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Fig. 5. Stepwise information gain in Experiment 1. (a) Mean information gain in the question-selection phase (first two questions). (b) Mean information gain in the
question-generation phase (all but first two questions). (c) Mean information gain of all questions. Each dot is one subject; box plots show interquartile range with
median (line), mean (diamond), and range (whiskers). Horizontal lines show average information gain of random, stepwise-optimal, and globally optimal strategy.
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children and one adult were excluded because the camera was not
working properly.

5.2. Procedure and materials

The materials and procedure were largely identical to those of
Experiment 1. As before, subjects first were introduced to the game and
its goal, and then they sorted monster cards according to the splits in-
duced by the four possible first questions (including querying an arbi-
trary individual monster). The only difference was that prior to actually
playing the game, participants were presented with a series of pairwise
choices among possible first questions.

For each comparison, the participant was asked to imagine that two
children were playing the game, each of them selecting one of the two
presented questions to start with (see Appendix E for the script used).
Queries were visualized using the corresponding question cards
(Fig. 1b). Subjects were asked to indicate who they thought would
identify the true target item faster (e.g., the child starting with Q1 or
the child starting with Q2). The primary purpose of this additional test
was to directly pit critical queries against each other, namely Q1 versus
Q2 (they tie for maximum information gain, but Q1 has higher path
length reduction) and Q2 versus Q3 (Q2 has higher information gain
but lower path length reduction than Q3). In addition, we hypothesized
that presenting pairwise choices prior to playing the actual game might
highlight questions’ varying efficiencies.

Each subject answered all three pairwise comparisons among Q1,
Q2, and Q3, as well as two pairwise comparisons between the most
efficient query, Q1, and a randomly chosen hypothesis-scanning ques-
tion (from the set Q4–Q10 and Q11–Q15, respectively, which differ in
their efficiency; see Table 1). Comparisons were conducted in random
order.

5.3. Results

5.3.1. Pairwise choices
Fig. 6 shows participants’ choices for the different pairs of queries.

(Due to errors in data collection, 6 of 790 comparisons are missing.)
There are two critical comparisons for which path length reduction and
stepwise information gain make diverging predictions. The first com-
parison is Q1 versus Q2, which are both stepwise optimal but Q1 is
globally optimal. None of the age groups differed from chance in their
choices (all >ps .21, binomial tests); there was also no difference
among the three age groups ( =p .17, Fisher’s exact test).

The other critical comparison concerns Q2 (split 3:9) versus Q3
(split 2:10), with the former being stepwise optimal but the latter being
more efficient in terms of expected path length reduction. Adults and
10-year-olds had a slight preference for the less efficient but more

splithalfy question, although the selection proportions did not differ
from chance ( =p .13 and =p .07, respectively, binomial tests). Eight-
year-olds were indifferent ( =p .58). Choice patterns did not differ be-
tween age groups though ( =p .13, Fisher’s exact test). Taken together,
these results indicate that searchers were not sensitive to questions’
long-run efficiency, even when only evaluating two queries at once.

A baseline measure of sensitivity is provided by the comparison of
Q1 versus Q3, with the former having higher splithalfiness
and also being optimal with respect to path length reduction.
Interestingly, only adults showed a clear preference for the better query
( =p .001, binomial test), whereas children did not differ from chance
(both >ps .12). Consequently, selection frequencies differed among age
groups ( =p .002, Fisher’s exact test).

The final analysis concerns the two comparisons involving the globally
optimal query, Q1, against a randomly chosen hypothesis-scanning question
pertaining to an individual monster from the set Q4–Q10, and Q1 versus a
randomly chosen monster from the set Q11–Q15 (these two sets have
identical stepwise information gain, but differ in terms of efficiency; see
Table 1). Regardless of age, subjects had a strong preference for the
constraint-seeking question, Q1, over the hypothesis-scanning questions
(all <ps .01, binomial tests). Consistent with the literature (Mosher &
Hornsby, 1966; Ruggeri & Feufel, 2015; Ruggeri & Lombrozo, 2015), we
also observed an age-related trend regarding the selection of hypothesis-
scanning questions. Aggregating across the two comparisons, adult subjects
endorsed querying an individual monster 4.8% of the time, whereas 10- and
8-year-olds did so 15.7% and 28.2% of the time, respectively.
Accordingly, choice proportions differed among age groups for both
comparisons ( =p .0003 and =p .03, respectively, Fisher’s exact test).

5.3.2. Efficiency of search
As in Experiment 1, overall children searched as efficiently as

adults; in fact, 8-year-olds performed best in terms of mean and median
number of questions (Figs. 3a and 7b). The difference among age
groups was not reliable though ( 2 =1.89, =p .39, df=2, Kruskal-
Wallis test).

5.3.3. Selection of first question
Choices for the first question (Fig. 7b–d) clearly differed from

chance for adults ( = = < =N p w(3, 52) 26.3, . 0001, .712 ) and
10-year-olds, ( = = = =N p w(3, 54) 18.4, .0004, .582 ); choices of
8-year-olds were more noisy ( = = = =N p w(3, 52) 7.2, .06, .372 ).
Selection frequencies did not differ among age groups ( =p .16, Fisher’s
exact test). In contrast to Experiment 1, where 10-year-olds but not
adults showed a tendency to preferably select the most efficient query,
this was not the case in Experiment 2; in the context of the other
findings we therefore assume that this observation was just noise.

No adult chose a hypothesis-scanning question as first query, one of

Fig. 6. Pairwise choices among questions in Experiment 2. For each pair, the more efficient query is shown on the bottom. IG= stepwise information gain,
PLR=path length reduction.
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the 10-year-olds did, and five of the 8-year-olds did. Considering only
searchers who started out with a constraint-seeking question, only
adults’ choices among Q1, Q2, and Q3 differed from chance
( = = = =N p w(2, 52) 6.73, .03, .362 ), whereas this was not the case
for 8- and 10-year-olds ( =p .76 and =p .32, respectively). The overall
pattern did not differ between groups though ( =p .59, Fisher’s exact
test).

Choice proportions show an age-related trend regarding question
selection in accordance with their splithalfiness. The rate of selecting
one of the two 3:9-split questions was 61.5% for 8-year-olds (34.6% Q1,
26.9% Q2), 74.1% for 10-year-olds (40.7% Q1, 33.3% Q2), and 82.7%
for adults (46.2% Q1, 36.5% Q2). Preference for a 3:9 split question
over the other questions differed among age groups
( = = = =N p w(2, 158) 5.9, .05, .192 ). Comparing these choice pro-
portions with randomly choosing among the three constraint questions
showed that only adults differed from chance ( =p .01, binomial test
against 2/3 chance, vs. =p .46 and =p .31 for 8- and 10-year-olds,
respectively).

The final analysis considers only searchers who initially asked one
of the two 3:9 split questions (32 8-year-olds, 38 10-year-olds, and 42
adults). There were no differences in rate of selecting the more efficient
question among the age groups (p 1, Fisher’s exact test), and choice
of the more efficient 3:9 question did not differ from chance for any of
the age groups (all >ps .54, binomial test), or when aggregating across
all subjects ( =p .26). These results indicate that regardless of age,
searchers did not distinguish between more and less efficient queries
that induce the same split.

5.3.4. Information gain analysis
Fig. 8 shows the stepwise information gain by age group and phase

of the game. There were no differences among age groups in the
question-selection phase ( 2 =0.69, = =p df.71, 2, Kruskal-Wallis
test). In the question-generation phase, adults asked slightly more in-
formative questions than younger and older children, but differences
among age groups were not significant ( 2 =2.96, = =p df.23, 2).
There were also no statistical differences when considering the average
information gain of all questions ( 2 =4.66, = =p df.1, 2).

6. Aggregate analyses

To further assess age-related differences in search we considered all
subjects from both experiments (Table 2) and treated children’s age as a
continuous variable. Fig. 9a shows children’s search efficiency. There
was no relation between children’s age and the number of questions
needed to identify the target item ( =r .004; Spearman rank correlation
here and in the following). On average, adults required slightly
more questions than children, but the difference was not significant
( =M 4.47adults , 95% CI = [4.17, 4.76] vs. =M 4.36children , 95%
CI = [4.09, 4.64]), = =z p0.73, .46, Wilcoxon-Mann-Whitney test).

Fig. 9b plots the expected path length reduction of the first question
as a function of age. Again children performed as well as adults
( =M 0.77adults , 95% CI = [0.72, 0.81] vs. =M 0.80children , 95%
CI = [0.76, 0.84], = =z p1.02, .31), with no relation between
children’s age and path length reduction ( =r .02).

Fig. 9c shows the mean information gain in the question-generation
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c) 10−year−olds (n=54)
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Fig. 7. Efficiency and selection proportions for first question in Experiment 2. (a) Number of questions needed to identify the true target item. Each dot is one subject;
box plots show interquartile range with median (line), mean (diamond), and range (whiskers). Horizontal lines show average performance of random, stepwise-
optimal, and globally-optimal models. (b–d) First questions chosen by 8-year-olds, 10-year-olds, and adults. Questions ordered by path length reduction, with the
expected reduction of each question shown in square brackets. Numbers on top of bars show induced splits.
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Fig. 8. Information gain analysis of Experiment 2. (a) Mean information gain in the question-selection phase (first two questions). (b) Mean information gain in the
question-generation phase (all but first two questions). (c) Mean information gain of all questions. Each dot is one subject; box plots show interquartile range with
median (line), mean (diamond), and range of data (whiskers). Horizontal lines show average information gain of random, stepwise-optimal, and globally optimal
models.
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phase. For this analysis, we considered only games in which there were
more than three items remaining at the beginning of this phase
(65% of children and 68% of adults), as otherwise only hypothesis-testing
questions could be asked.5 The mean information gain of children was 0.84
(95% CI = [0.81, 0.87]) and of adults 0.91 (95% CI = [0.88, 0.93]),
showing that on average adults generated more informative questions than
children ( = =z p3.77, .0002; Wilcoxon-Mann-Whitney test). There was
also a relation between age and children’s ability to generate informative
questions ( = =r p.27, .008; the solid line in Fig. 9c shows a linear re-
gression).

7. General discussion

The present research assessed to what extent people plan ahead in
the 20-questions game. Children searched as efficiently, but also as
myopically, as adults. Thus, regardless of age, searchers were not sen-
sitive to achieving efficiency through planning ahead and considering
what questions could be available subsequently. Instead, question se-
lection in both children and adults seemed to be primarily driven by the
splithalfiness of questions and their corresponding stepwise information
gain. In this sense, our results are the first suggesting that stepwise-
optimal methods better account for human behavior, not only in si-
tuations where there is no conflict between stepwise-optimal question
selection and long-run efficiency (Denney & Denney, 1973; Eimas,
1970; Nelson et al., 2014; Ruggeri & Lombrozo, 2015; Ruggeri et al.,
2017; Siegler, 1977; Thornton, 1982), but also when they are suboptimal
and fail to identify the most efficient first query.

7.1. Experience-based search, reinforcement learning, and planning an
efficient sequence of queries

The ability to obtain information in the most efficient manner might
strongly depend on learning and experience. The findings of Meier and
Blair (2013) demonstrate that adult searchers can achieve high effi-
ciency when given the opportunity to repeatedly interact with the task
and observe the outcomes of their choices over hundreds of trials.

Experience-based learning could shape people’s search behavior in
at least two different ways. At a metacognitive level, searchers might
learn from experience the strategic value of planning ahead. In the same
manner that a novice chess player needs to learn, through experience or

instruction, that improving performance requires looking more than
one step ahead, information foragers may need to learn that stepwise
methods can sometimes be inefficient. For instance, Meier and Blair
(2013, Supplemental Material) in their analysis of searchers’ learning
curves, noted that “while it appears in the aggregate that a gradual shift
to F1-first trials occurs [where F1 refers to the feature that was most
efficient to query first], this generally reflects the tendency for parti-
cipants to adopt primarily F1-first strategies at different points in time”
(p. 7). The absence of a gradual shift, at the individual level, towards
searching the most efficient feature may indicate metacognitive
learning, for instance in the form of insight effects. In the present task,
this would mean to realize, based on playing the experimental game
repeatedly, that one of the two stepwise-optimal queries is more effi-
cient because it allows for more informative questions on the second
step.

At a task-specific level, experience-based learning might impact
search strategies by enabling people to discover the long-run value of
different questions through experience. For instance, if given the op-
portunity to play the present 20-questions game repeatedly, searchers
might learn that Q1 is a better initial query than Q2 just by observing
the follow-up questions available for each outcome and adapt their
behavior accordingly. Just like the temporal-difference algorithm in
reinforcement learning (Sutton, 1988; Watkins & Dayan, 1992; Witten,
1977), this sort of learning over repeated play could lead people to
choose in accordance with long-run efficiency without explicitly plan-
ning ahead within any single run through the task.

An important area for future research is therefore to study the in-
terplay between learning and search in situations in which people ex-
perience a task multiple times. The reinforcement learning framework
(Sutton & Barto, 1998) offers several approaches for modeling experi-
ence-based learning and has been widely used to develop strategies and
learning mechanisms to tackle the conflict between short- and long-run
optimality. Although this line of research has been primarily concerned
with reward-based decision making, extending it to pure information
search tasks would be fairly straightforward. If the reward is defined as
−1 on every step until the game is completed, then to maximize total
reward (or, equivalently, to minimize loss) the agent needs to identify
the target with the fewest number of queries. Alternatively, by using
informational reward functions, it is possible to incorporate the quan-
tities underpinning different OED models, such as entropy reduction in
the case of information gain. Stepwise OED models can be implemented
by valuing only immediate rewards, which in the reinforcement
learning framework is achieved by setting the temporal discount factor
to zero. Models with a longer planning horizon can be obtained by
increasing the temporal discount parameter such that later steps are
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Fig. 9. Aggregate analyses combining Experiments 1 and 2. Each dot is one child, the dashed line shows the mean across all adult subjects, and r denotes Spearman
rank correlation. (a) Number of questions. (b) Expected path length reduction of first question. (c) Mean information gain in the question-generation phase; the solid
line shows a linear regression with children’s age as predictor.

5 If there are only two or three items, all informative questions have identical
information gain and path length reduction (because the only informative splits
are 2:1 and 1:1, respectively) and therefore query choices are not indicative of
people’s ability to generate good questions.

B. Meder, et al. Cognition 191 (2019) 103965

11



also valued (e.g., Butko & Movellan, 2010). Such research would con-
nect hitherto separate literatures by integrating reinforcement learning
mechanisms with formal models of the value of information, as well as
highlighting connections to multistep OED models that have a longer
planning horizon (Nelson et al., 2018).

7.2. One step at a time: normative issues and stepwise information
acquisition

Stepwise methods are widely used in different fields, including, but
not limited to, psychology and cognitive science. For instance, stepwise
(greedy) methods are an integral part of many important machine
learning approaches, such as classification and regression trees
(Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986), Gaussian
Process regression (Rasmussen & Williams, 2006; Wu, Schulz,
Speekenbrink, Nelson, & Meder, 2018), and active learning (Settles,
2010). One argument for relying on such approaches is that, although
they are not necessarily globally optimal, they in many cases yield good
performance with low computational costs.

To better understand the performance of stepwise information gain
and the split-half heuristic in the 20-questions game, we ran a series of
computer simulations. Using the methodology of Nelson et al. (2018),
we generated a wide range of environments with varying numbers of
possible questions and items. Specifically, we varied three factors: the
number of items (12, 15, 18), the number of constraint-seeking ques-
tions (2, 3, 5, 7, 9), and the mean feature density (splithalfiness) of the
features targeted by the constraint-seeking questions (0.1, 0.2, 0.3, 0.4,
0.5; see Appendix C for details). For each environment, we tracked
whether the first question with the highest information gain was also
the most efficient first query in terms of expected path length reduction,
and how much loss was incurred by selecting questions according to
stepwise information gain (absolute and relative increase in the ex-
pected number of questions relative to the globally optimal query).

Fig. 10a shows how often stepwise optimal information gain iden-
tified the most efficient first query; Fig. 10b shows the total costs in-
curred in terms of increase in the expected number of queries. Overall,
the simulations led to three key findings. First, if there are only two

constraint-seeking questions, stepwise information gain always identi-
fies the most efficient query. In fact, it can be proven analytically that
this result holds regardless of the number of items and feature densities
(Nelson et al., 2018). Second, performance of the stepwise strategy
decreases when the environment becomes more complex, that is, when
the number of hypotheses (items) and constraint questions increases.
Third, although the agreement between the stepwise and globally op-
timal strategies decreases to about 80% in some types of environments,
the incurred costs are rather low. Aggregating across all environments,
stepwise information gain chose the globally optimal query 93.8% of the
time, with a mean expected increase of 0.005 (SD = 0.026) queries; the
relative increase in path length was about 0.13% (SD = 0.6). These
findings suggest that selecting queries in accordance with their spli-
thalfiness, thereby reducing uncertainty in a stepwise-optimal fashion,
is a reasonable and robust strategy in a wide range of environments. If
people pick up on this pattern in their natural environment, they may
come to rely on that heuristic even in cases (such as those in the present
experiments) where it performs worse. The computational complexity
of identifying the globally optimal solution makes it infeasible to use
computers to evaluate model performance in environments with large
numbers of hypotheses. This same consideration supports humans’ use
of stepwise-optimal methods: they are computationally much simpler
and are also applicable in situations in which the globally optimal so-
lution is intractable.

The question of how efficient greedy methods such as stepwise in-
formation gain can be has been a topic of research in computer science,
where the focus has been on the mathematical construct of submodular
functions (Nemhauser, Wolsey, & Fisher, 1978). This work has led to
provable upper bounds on the number of questions required by a
greedy strategy in information-acquisition tasks (Golovin & Krause,
2011). For the 20-questions game, these results imply that the expected
number of questions required by stepwise information gain is no more
than ln n+1 times that of the globally optimal strategy. However,
these analytic results are asymptotic in the number of items (hy-
potheses), and the bounds for smaller environment sizes such as those
considered here can be shown to be significantly tighter. For example,
the expected path length of a tree using only hypothesis-scanning
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Fig. 10. Performance of stepwise information gain
in different environments. (a) Proportion of times
the splithalfiest (maximum stepwise information
gain) question is also the most efficient (globally
optimal) first query. (b) Cost incurred by selecting
the first query stepwise optimally, defined as the
absolute increase in the expected number of queries
relative to the globally optimal query. Each tile
shows the mean across 1000 randomly generated
environments. See Nelson et al. (2018) for a more
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questions (i.e., targeting an individual item at each step) provides a
tighter bound on the efficiency of stepwise strategies than do the sub-
modularity results, when the number of items is sufficiently small. This
is one advantage of the present approach of focusing on subjects’ se-
lections of single questions (mainly on the first step), rather than on
their full sequences of choices. The expected path length reduction of a
question must lie between 0 and 1, giving a simple and universally
interpretable measure of efficiency of each choice.

Another perspective on the relative performance of stepwise and
planning-based methods comes from computational work on the dis-
tinction between model-free and model-based reinforcement learning.
Daw et al. (2005) developed an influential dual-process model, wherein
behavior can be controlled either by a system that explicitly plans
ahead (model-based) or by a stepwise (model-free) system that con-
siders only the next action together with cached values for its possible
outcomes. In the domain of information search, an action corresponds
to a query, and the outcome of an action is an updated belief state that
incorporates the answer to the query. In the 20-questions game, a belief
state is simply the set of remaining candidate items (i.e., the items that
satisfy all answers received thus far). Absent the opportunity to learn
from repeated experience, the most natural value to assign to such a
state is the (inverse or negative) number of items. Thus model-free
decision making maps onto the split-half heuristic: evaluate each
question solely in terms of the number of items it could leave on the
next step. In their normative analysis of factors that should encourage
lookahead versus stepwise control, Daw et al. (2005) showed that sto-
chasticity or uncertainty in the task environment reduces the effec-
tiveness of planning ahead, due to the computational error that accu-
mulates when searching through a branching tree of possible outcomes.
The principle is similar (though not identical) to the bias–variance
trade-off (Geman, Bienenstock, & Doursat, 1992): Stepwise control is
biased because it ignores considerations of future steps, but it is less
noisy. By its nature, information search involves uncertainty and sto-
chastic outcomes (i.e., the answer to a question is unknown before it is
asked). Thus Daw et al.’s (2005) analysis as applied to information
search would suggest that planning ahead incurs too much cost in
computational noise as compared to methods such as stepwise OED
models and the split-half heuristic.

From a normative perspective, acquiring information in a stepwise
way could be particularly harmful when external payoffs apply. For
instance, in medical diagnosis, tests are often expensive in terms of
monetary costs, can incur harmful side effects, or are time sensitive, so
that it is vital to acquire relevant information in an efficient manner. In
such cases, multistep methods that plan more than one query ahead can
aid search and inference, with the applicable costs and benefits out-
weighing the additional computational costs.

7.3. Developmental trajectories: From 20-questions games to active learning

Twenty-questions games have been widely used in the develop-
mental literature on active learning and have helped researchers map
developmental trajectories in children’s information-acquisition stra-
tegies (Herwig, 1982; Mosher & Hornsby, 1966; Nelson et al., 2014;
Ruggeri & Feufel, 2015; Ruggeri & Lombrozo, 2015; Ruggeri et al.,
2016). Only recently have developmental and cognitive researchers
gone beyond examining the sometimes not too surprising develop-
mental trends (e.g., that adults tend to generate more informative
questions than younger children), by using cognitive modeling techni-
ques to investigate the computational principles underlying the devel-
opment of search and question asking. This deeper level of analysis has
revealed that 5-year-olds can identify the most informative of two given
questions (Ruggeri et al., 2017); that 7-year-olds can adapt their
question-asking behavior in accordance with the prior probability of
different hypotheses; and that adults do not necessarily adapt their
search strategies more promptly than children do (Ruggeri & Lombrozo,
2015). Our present results contribute to this literature by showing that

adults are not necessarily better than 8- and 10-year-old children at
planning ahead when asking questions, thereby highlighting the value
of cognitive modeling and computational analysis of the task environ-
ment for developmental theorizing.

Future research should place a stronger emphasis on investigating
the development of planning capabilities in situations characterized by
different types and degrees of uncertainty. The focus of research to date
has been on deterministic tasks (e.g., Towers of London and Hanoi or
maze-navigation problems). This contrasts with the probabilistic out-
comes of many real-world situations, which require taking multiple
possible outcomes into account. Another important set of issues, in the
context of experience-based learning tasks where there is a conflict
between stepwise and globally optimal methods, is how speed of
learning varies as a function of age, whether learning takes place in the
form of a gradual transition or is punctuated with insight effects, and
how learning and generalization change across the lifespan (Schulz,
Wu, Ruggeri, & Meder, in press). Finally, future research should explore
how to teach children and adults to become good information foragers.
Previous attempts to improve children’s question-asking strategies, for
example, by providing explicit instructions or examples of adults asking
informative questions, have had only moderate success (e.g., Courage,
1989; Denney, 1972; Denney, Denney, & Ziobrowski, 1973; Denney &
Turner, 1979). The effects did not generalize to other sets of stimuli and
tended to be short-lived. We believe that a computational analysis of
children’s and adults’ question-asking strategies and information search
behavior, along the lines of the work presented in this paper, could
greatly inform the design of more effective, individualized active-
learning training programs and interventions.

7.4. Concluding remarks

In recent years, a strong interest in human information acquisition
and active learning has emerged across different fields, including de-
velopmental psychology (Bonawitz, Denison, Griffiths, & Gopnik, 2014;
Nelson et al., 2014; Ruggeri et al., 2016; Ruggeri et al., 2017), visual
perception (Najemnik & Geisler, 2005; Nelson & Cottrell, 2007), higher
level cognition (Coenen et al., 2018; Gureckis & Markant, 2012;
Markant & Gureckis, 2014; Meder & Nelson, 2012; Nelson, 2005), and
cognitive neuroscience (Schulz & Gershman, 2019; Zajkowski, Kossut,
& Wilson, 2017). These studies have advanced understanding of the
behavioral and computational principles that guide human information
acquisition and have uncovered key relationships between more com-
plex statistical models of the value of information and simple heuristics
for information search.

However, research to date has almost exclusively relied on stepwise-
optimal methods for quantifying questions’ usefulness and evaluating
human search behavior. One exception is Bramley et al. (2015), who
investigated human behavior in a causal reasoning task where subjects
could actively intervene in a causal system to learn about its structure.
Although the study was not designed to directly contrast stepwise with
longer run planning-based strategies, results showed that models with
two-step-ahead planning horizons did not predict human behavior as
well as the corresponding stepwise models.

The present research was motivated by the observation that step-
wise models can be inadequate in situations where multiple queries can
be conducted (Nelson et al., 2018). Consideration of such situations in
future research is critical for both the descriptive and normative ana-
lysis of human information acquisition. For instance, whereas Meier
and Blair (2013) found that after extensive experience people were
sensitive to long-run efficiency considerations in a probabilistic classi-
fication task, the present studies indicate that both children and adults
have difficulties planning ahead in the seemingly simple task of the 20-
questions game, at least in their first encounter with the environment.
This discrepancy calls for more research to better understand and
characterize the conditions under which searchers can plan an efficient
sequence of queries, and the cognitive processes underlying sequential
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search in different situations.
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Appendix A. Task environment used in the experiments

Table 3 shows the canonical item–feature matrix for the task used in the present experiments. Questions Q1 through Q3 are constraint questions
pertaining to features possessed by multiple items (mapped randomly onto physical features color, shape, and pattern for each subject), and Q4
through Q15 to features possessed by only a single item (e.g., crown, pipe, mustache etc., which are individuating visual features representing unique
identifiers M1–M12; see Fig. 1a).

Appendix B. Expected path length and path length reduction

In the 20-questions game, the goal is to identify an unknown target item with as few binary (yes–no) questions as possible. The globally optimal
solution for this problem can be defined as the binary question tree with the shortest expected path length. In any complete question tree, each item
corresponds to a leaf node at the end of the path of questions that uniquely identifies that item. The expected path length of the tree is the mean path
length over all items (assuming a uniform prior for the target). Generally, the problem of identifying the optimal tree is intractable (Hyafil & Rivest,
1976) because the number of possible trees grows superexponentially in the number of queries.

For a moderate number of queries and items the globally optimal solution can be identified through dynamic programming (Nelson et al., 2018).
Specifically, one identifies the optimal next question and expected remaining path length for every possible subset of remaining items. This can be
done recursively, where once the answer has been found for all subsets of n or fewer items, it can then be solved for all subsets of +n 1, continuing
until one reaches the full set of items. Code for implementing this algorithm, which requires only an item–feature matrix as input, is available at
https://osf.io/cq48j/.

Here we describe how optimal question trees can be used to define the expected reduction in path length for any question on the first step of the
search task. Let QPPL( ) denote the expected posterior path length of a given query Q, that is, how many questions are remaining (on average) after
asking that question first and deciding globally optimally thereafter:

=Q QPPL( ) [remaining questions | start with , globally optimal thereafter]. (B.1)

The PPL can be calculated by considering the possible outcomes of the query (i.e., affirmative and negative answers), the probabilities of these
outcomes, and the expected number of remaining questions in each case if deciding optimally thereafter. First, consider Q1. If Q1=1 (i.e., the
question yields an affirmative answer, with =p 3/12) then three items remain, and if Q1= 0 (a negative answer, with =p 9/12) then nine items
remain. In the former case, only hypothesis-scanning questions are possible, and on average + =1/3·1 2/3·2 5/3 more questions are needed to
identify the target item. If nine items remain, the globally optimal next query is Q2, which for this subset has an expected path length of 4.222. Thus,

= + =PPL(Q1) 3/12·5/3 9/12·4.222 3.583.
Now consider Q2 as the first query. If Q2= 1, three items remain (with =p 3/12), and if Q2=0, nine items remain (with =p 9/12). In the

former case, on average 5/3 questions are needed to identify the target. If nine items remain, however, also only hypothesis-scanning questions
remain, all of which have path length 4.889. Accordingly, = + =PPL(Q2) 3/12·5/3 9/12·4.889 4.083.

Table 3
Canonical Task Environment. Rows M1 through M12 Denote the Individual Items (see Fig. 1a) Represented by a Binary Feature Vector. Columns Q1 Through Q15
Represent the Possible Queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15
Color Shape Pattern Ears Bowtie Yellow hair Blue horn Mustache Pipe Red horns Crown Beard Wings Viking Black hair

M1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
M5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
M6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
M7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
M8 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
M9 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
M10 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
M11 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
M12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Split 3:9 3:9 2:10 1:11 1:11 1:11 1:11 1:11 1:11 1:11 1:11 1:11 1:11 1:11 1:11
IG 0.811 0.811 0.650 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414
PL 4.583 5.083 4.667 4.833 4.833 4.833 4.833 4.833 4.833 4.833 5.250 5.250 5.250 5.250 5.250
PLR 1.000 0.500 0.917 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.333 0.333 0.333 0.333 0.333

Note. IG= stepwise information gain in bits; PL= expected path length (expected number of questions when starting with this feature and searching globally
optimally thereafter); PLR= expected path length reduction when starting with this feature and searching globally optimally thereafter. In the behavioral experi-
ments, assignment of queries Q1-Q3 to physical features color, shape, and pattern was counterbalanced across subjects.
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We can also define QPL( ) as the expected total path length of a given query Q:

=Q QPL( ) [total questions | start with , globally optimal thereafter]. (B.2)

By definition, = +Q QPL( ) PPL( ) 1. For instance, = + =PL(Q1) 3.583 1 4.583, meaning that on average 4.583 total questions are required to
identify the target item with certainty, if starting with Q1 and deciding globally optimally thereafter (i.e., on each subsequent step choosing the
query with the minimum PL based on the remaining items).

The expected path length reduction (PLR) of a given query Q can now be defined based on its expected posterior path length, QPPL( ), relative to
the expected path length of the globally optimal query:

=Q Q QPLR( ) min PL( ) PPL( )
Q (B.3)

where denotes the set of all available queries. For instance, in the environment considered here, the most efficient first query is Q1,
such that = =Qmin PL( ) PL(Q1) 4.583Q (Table 1). Accordingly, = = =PLR(Q1) PL(Q1) PPL(Q1) 4.583 3.583 1.0, whereas

= = =PLR(Q2) PL(Q1) PPL(Q2) 4.583 4.083 0.5.

Appendix C. Simulations for assessing performance of stepwise-optimal information gain and the split-half heuristic

To assess the performance of stepwise-optimal information gain and equivalent strategies like the split-half heuristic, we generated a large
number of environments (each defined by an item–feature matrix; cf. Table 3). Nelson et al. (2018) report a more extensive variety of simulations, on
which the present simulations are based. In addition to the constraint questions, each item had a unique feature, such that the total number of
available questions in an environment is the number of items plus the number of constraint questions (e.g., if there are 15 items and 3 constraint
questions, the total number of questions is 18). For each generated environment, we tracked whether the question at Step 1 with the highest stepwise
information gain also had the shortest expected path length (or, equivalently, highest expected reduction in path length). If there was more than one
maximum information gain query, one of them was picked at random. We also tracked how much loss was incurred by the query chosen by the
stepwise-optimal strategy, where loss was defined as the difference in the expected number of questions relative to the globally optimal query,

PL(globally optimal query) PL(max IG query) (C.1)

where PL denotes expected path length and IG denotes stepwise information gain. We also computed the relative increase of queries, defined as

1 PL(globally optimal query)
PL(max IG query) (C.2)

For the simulations, we varied three factors: the number of items (12, 15, 18), the number of constraint questions (2, 3, 5, 7, 9), and the mean
feature density (splithalfiness) of the features. The density of each constraint feature was sampled from a Beta( , ) distribution with an expectation
corresponding to the desired mean feature density, where and denote the shape parameters of the distribution. The five beta distributions were
Beta(1,9), Beta(2,8), Beta(3,7), Beta(4,6), and Beta(5,5), which have means of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

Sampling was done independently for each constraint feature. The sampled density was used to generate a binary vector of length n (where n =
number of items) using Bernoulli sampling. Thus the actual density of a feature differed from the generating density (the value sampled from the beta
distribution) according to binomial sampling error. If the sampled vector corresponded to an uninformative feature (i.e., a feature possessed by all or
no items), we resampled (keeping the generating density) until an informative feature was created. For each of the × × =3 5 5 75 parameter
combinations, we generated 1,000 environments (binary item × feature matrices) subject to the applicable constraints.

Appendix D. Script used in Experiment 1

This script, as well as the script for Experiment 2, is translated from German. The instructions to the experimenter running the session are given in
italicized text.

Hello [name of participant]! My name is [name of experimenter]. We are going to play a game together! In this game I have a very special machine
[point to machine], see? This machine is super cool: when it’s turned on, it plays music! I’ll show you how it works.

The machine turns on when you put two identical monsters inside. Here are two monsters, which are completely identical, see? [Show two
additional identical red monsters.] First, I put one of the monsters in the machine and nothing happens. But if I add the second, identical monster…the
machine turns on! Look! Isn’t that funny? So, here’s a bunch of other monsters: look! [Show both decks of cards]. These two decks contain the same
monsters. I’ll show you: First, I take all monsters of the first group.

[Take one deck and shuffle it three times. From the shuffled deck of cards, place monsters individually, step by step, in a 3× 4 grid. Cards should be placed
in front of the child or at least on the child’s side of the table; to the right of the cards there should be enough space to later on in the game place the rejected
cards. Start with the card on top, which is placed in the top left corner. The subsequent card goes to the right of it; fill the rows in this manner and start a new
row when a row is full.]

Now look at these monsters here [show second deck of cards]; these are exactly the same. [Place monsters from second deck individually, step by step
in a second 3× 4 grid, so their order matches the one of the first grid. Afterward collect the cards and shuffle them three times.] Now I randomly pick one of
these monsters [Pick one monster blindly], look at it, and put it into the machine. [Put monster into machine.] This means that one of these monsters
here [point to cards] looks exactly the same as the monster that I just put into the machine [point to machine]. The goal of this game is to find this
identical monster, to turn on the machine!

To find the right monster, you can ask me questions. To these questions, I can only reply with “yes” or “no.” And you also get ten 50-cent coins.
[Hand over 10 coins and place in front of the child, to the right of the cards.] In this game, you have to pay one 50-cent coin for every question that you
ask me. At the end of the game you can keep all the coins that you have left, when you have found the monster to turn on the machine. Do you like
that? This means you want to ask as few questions as possible, to take home as much money as possible.

The questions that you can ask me are on these cards. [Take deck of shuffled question cards and put them down one by one from left to right.] Let’s
have a look at the questions that you can ask me.
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[randomized order of question cards (Q cards): cards are shuffled three times. Point to first/second/third/fourth/last Q card] By using this question you
can find out whether the monster [is blue/green] [is round/square] [has dots/no dots] [is one particular monster]. [Every question has two versions; which
version is used is chosen randomly. One of the Q cards is not available in the second round, as long as the first question is not for a particular monster.]

COLOR: By using this [next/last] question, you can ask about the color of the monster. The monsters are [upper color] or [lower color]. The
question therefore is whether the monster is [green/blue, state upper color first]. Let’s order the monsters according to their color! [Start with upper
color on Q card]: Let’s put all [green/blue] monsters here [point to right side of table] and all [blue/green] monsters here [point to left side of the table].
Great! Now let’s count together how many green/blue monsters there are: one, two, …[n green/blue] monsters! [Start counting: if child starts to count
as well let them keep on counting independently.] And now, let’s count how many [blue/green] monsters we have: one, two, …[n blue/green] monsters!
[Start counting: if child starts to count as well, let them keep on counting independently.] So there are [n green/blue] monsters and [n blue/green] monsters!
[Shuffle monsters and place again randomly in grid; the ordering can be different from the previous ordering.]

SHAPE: By using this [next/last] question, you can ask about the shape of the monster. The monsters are [upper shape] or [lower shape]. The
question therefore is whether the monster is round/square [state upper shape first]. Let’s order the monsters according to their shape! [Start with upper
shape on Q-card] Let’s put all [round/square] monsters here [point to right side of the table] and all [square/round] monsters here [point to left side of the
table]. Great! Now let’s count together how many [round/square] monsters there are: one, two, …[n round/square] monsters! [Start counting: if child
starts to count as well let them keep on counting independently.] And now, how many [n square/round] monsters we have: one, two, …[n square/round]
monsters! [Start counting: if child starts to count as well let them keep on counting independently.] So there are [n round/square] monsters and [n round/
square] monsters! [Shuffle monsters and place again randomly in grid; the ordering can be different from the previous ordering.]

PATTERN: By using this [next/last] question, you can ask about the pattern of the monster. The monsters are [upper pattern] or [lower pattern].
The question therefore is whether the monster is [dotted/not dotted] [state upper first]. Let’s order the monsters according to their pattern! [Start with
upper pattern on Q-card] Let’s put all [dotted/not dotted] monsters here [point to right side of table] and all [not dotted/dotted] monsters here [point to left
side of the table]. Great! Now let’s count together how many [dotted/not dotted] monsters there are: one, two, …[n dotted/not dotted] monsters! [Start
counting: if child starts to count as well, let them keep on counting independently.] And now, how many [not dotted/dotted] monsters there are: one, two,…
n non dotted/dotted monsters! [Start counting, if child starts to count as well let them keep on counting independently.] So there are [n non dotted/dotted]
monsters and [n non dotted/dotted] monsters! [Shuffle monsters and place again randomly in grid; the ordering can be different from the previous ordering.]

SINGLE MONSTER: By using this [next/last] question, you can ask about a particular monster! When you ask this question, you can choose one
monster and ask whether this monster can turn on the machine. Which of the monsters could you ask for, just as an example? [Let child generate a
question for a single monster.] Great! Now let’s take this monster out. [Take monster out and put it to the right of the grid.] We therefore have one monster
here, and one, two, …[n] monsters here! [Start counting: if child starts to count as well, let them keep on counting independently.] [Shuffle monsters and
place again randomly in grid; the order can diverge from previous order.]

Remember, you want to find out which monster can turn on the machine by asking as few yes/no questions as possible! For every question that
you ask, you have to give me one 50-cent coin. Do you understand the rules? [Wait for confirmation. If positive: OK, if everything is clear, let’s get started!
If negative: Out of these (point to Q cards) you can choose one question you would like to ask. Try to use as few questions as possible to find the monster that
looks like the one in the machine. Do you have any specific question regarding the game? If no and game understood: OK, if everything is clear, let’s get
started!] [Start playing the game.]

So, which question would you like to ask me first? [Point to Q cards. Let child choose a Q card and hand back one 50-cent coin. Hold hand open, so
child can place the coin in it.] [If necessary: For every question, you have to give me one 50-cent coin. Can you please give me one?] Take chosen card from
the table: We can put this card away now. [Except if it’s the question for a particular monster, this question will be left in every round.] Give feedback
according to the randomly chosen “special” monster:

Well done! Well, [yes/no it is/isn’t feature]. Alright, so we know now that it’s not one of these monsters. [Remove monster(s) excluded by the question
from the table.]

So we have these monsters left. [Point to monsters.] [After first round:] Let’s have a look at the questions that you could ask now. [Point to Q cards.]
[After second question:] Alright, we can put these questions away now. [Put away remaining Q cards.]
∗∗∗∗These monsters are left now. From now on, you can ask every yes/no question that you want, even those that weren’t on the cards before!

For every question you still have to trade one 50-cent coin. What would you like to ask me? [Give child time to generate question. Give feedback: A very
good question!] Well, [yes/no, the monster is/isn’t feature]. Alright, so we know now that it’s not one of these monsters. [Remove monsters excluded by
the question from the table.]

[Repeat from ∗∗∗∗ until only one monster is left.]
[If necessary, encourage: Are you having trouble thinking of a question? Come on, let’s have a closer look at the monsters. What could you possibly ask? If

still no question generation: Is there any specific feature about the monsters you could ask for? Or do you want to ask for a particular monster?]
Yay! There’s only one monster left! Shall we have a look and see whether it can turn on the machine? You can put it inside and try! [Machine turns

on.] Wow, isn’t that fun! And you even have [n] 50-cent coins left!
Thank you for playing this game with me! That was fun, wasn’t it?

Appendix E. Script used in Experiment 2

The procedure in Experiment 2 was identical to that of Experiment 1, with the additional inclusion of the binary forced-choice paired-comparison
task in which participants chose between two queries. As in Experiment 1, participants were first familiarized with the game and the materials
(Appendix D). Then, before playing the game, the paired-comparison task was implemented as follows:

Before you can start selecting the questions you want to ask, I have some questions for you, OK?
[Order of paired-comparison tasks follows a predetermined random order. In each comparison, questions are presented at the same time, before the

explanation is given.]
Comparison Q1 vs. Q2: Imagine that another child plays this game and selects this question first [point to Q1 of the corresponding set]. Another

child also plays this game and selects this question first [point to Q2 of the corresponding set]. What do you think: Which of the two will find the
monster that turns on the machine faster? [Let the child select a query.] Ah, that’s an interesting idea!
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Comparison Q1 vs. Q3: Imagine that another child plays this game and selects this question first [point to Q1 of the corresponding set]. Another
child also plays this game and selects this question first [point to Q3 of the corresponding set]. What do you think: Which of the two will find the
monster that turns on the machine faster? [Let the child select a query.] Ah, that’s an interesting idea!

Comparison Q2 vs. Q3: Imagine that another child plays this game and selects this question first [point to Q2 of the corresponding set]. Another
child also plays this game and selects this question first [point to Q3 of the corresponding set]. What do you think: Which of the two will find the
monster that turns on the machine faster? [Let the child select a query.] Ah, that’s an interesting idea!

Comparison Q1 vs. random monster M1–M7: Imagine that another child plays this game and selects this question first [point to Q1 of the
corresponding set]. Another child also plays this game and selects this question first [point to a monster card M1–M7 of the corresponding set, following
randomization]. What do you think: Which of the two will find the monster that turns on the machine faster? [Let the child select a query.] Ah, that’s an
interesting idea!

Comparison Q1 vs. random monster M9–M12: Imagine that another child plays this game and selects this question first [point to Q1 of the
corresponding set]. Another child also plays this game and selects this question first [point to a monster card M8–M12 of the corresponding set, following
randomization]. What do you think: Which of the two will find the monster that turns on the machine faster? [Let the child select a query.] Ah, that’s an
interesting idea!

Great, then it’s your turn now!
[Playing the game follows the same procedure as in Experiment 1: see Appendix D.]

Appendix F. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.cognition.2019.05.002. The
data are available at https://osf.io/cq48j/.
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