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Abstract. Rational theories of diagnostic reasoning assume that the reasoner’s goal
is to infer the conditional probability of a cause given an effect from the available
data. Typically, diagnostic reasoning is modeled within a statistical inference frame-
work, with Bayes’ rule applied to the obtained covariation information serving as the
normative standard. This chapter analyzes diagnostic reasoning from the perspective
of causal induction, using the framework of causal Bayes net theory to instantiate
different accounts of rational diagnostic reasoning. These approaches elucidate the
relevant kinds of inputs, computations, and outputs by differentiating between para-
metric causal models and observable contingency information. A particularly interest-
ing feature of these accounts is that they can include predictions that systematically
deviate from the traditional, purely statistical norm. The analyses highlight key issues
for constructing a rational theory of diagnostic reasoning and the experimental study
of human rationality.
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1 Introduction

Diagnostic causal reasoning pertains to inferences from effect to cause, such as reasoning
from symptoms to diseases in medical diagnosis. Probabilistic diagnostic inferences can be
considered a special case of Bayesian inference, where beliefs about unobserved states of the
world (the cause events) are updated in light of observed data (the effect events). The ques-
tion to what extent people can make appropriate diagnostic inferences has been central to
debates on human rationality, with probability theory, and Bayes’ rule in particular, serving
as normative or descriptive reference point (Gigerenzer, 1996; Kahneman & Tversky, 1996).
Recent advances in causal modeling have provided new insights, with respect to both long-
standing norms of rationality and the descriptive adequacy of models of human diagnostic
reasoning. Causal Bayes net theory, that is, probabilistic inference over causal graphical
models, provides a formal framework for representing causal dependencies and modeling
different kinds of probabilistic causal inferences (Pearl, 2000; Spirtes, Glymour, & Scheines,
1993; Spohn, 1976/1978, as cited in Spohn, 2001; see also Chapter 4.2 by Hartmann, in this
volume). The framework explicates the relations between observed covariation information
and an underlying causal model that generates the data. Importantly, causal Bayes net the-
ory has the expressive power to instantiate different rational models of diagnostic inference,
thereby contesting the idea of a single normative benchmark for evaluating the rationality of
human diagnostic reasoning (Meder & Mayrhofer, 2017a; Meder, Mayrhofer, & Waldmann,
2014; Waldmann, Cheng, Hagmayer, & Blaisdell, 2008). This chapter highlights the ways in
which a causal analysis of diagnostic reasoning can inform issues of theoretical rationality
and guide empirical research.
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2 Diagnostic causal reasoning

2 Rational Models of Diagnostic Reasoning

Different models of diagnostic reasoning have been postulated that serve the dual purpose
of providing normative standards and constituting candidate models of human cognition.
Common to these approaches is the goal to infer the conditional probability of a cause given
an effect. They critically differ, however, with respect to their assumptions regarding the
relation between unobservable causal structures and observable covariation information, as
well as the involved representations and computations.

2.1 Diagnostic Reasoning as Statistical Inference

The most elemental form of diagnostic reasoning involves inferences from a binary (present
vs. absent) effect event E to a binary cause event C. For instance, the cause event C could be
a disease, with c and ¬c denoting the presence and absence, respectively, of the disease, and
the effect event E could be a particular symptom, with e and ¬e denoting the presence and
absence, respectively, of the symptom. Here, we consider the situation where the diagnostic
inference is based on a sample of observed data. For instance, a doctor may have data on how
many patients with the disease have a particular symptom, how many without the disease
have the symptom, etc. Given this covariation information, the diagnostic probability of
cause given effect, P (c|e), can be inferred using Bayes’ rule:

P (c|e) =
P (e|c) · P (c)

P (e|c) · P (c) + P (e|¬c) · P (¬c)
=

P (e|c) · P (c)

P (e)
(1)

where P (c) denotes the prior probability (base rate) of the cause, P (e|c) is the likelihood
of the effect given that the cause is present, and P (e|¬c) is the likelihood of the effect if
the cause is absent. Consider the data sample shown in Figure 1a (top). According to these
empirical frequencies, P (c) = 20/40 = 0.5, P (e|c) = 6/20 = 0.3, and P (e|¬c) = 2/20 = 0.1.
Plugging these values into Equation 1 yields the diagnostic probability P (c|e) = 0.75.

Whether people reason in line with Bayes’ rule has been pivotal to disputes about human
rationality. Studies in the 1950s and 1960s indicated that subjects updated their beliefs to a
lesser extent than prescribed by Bayes’ rule (Edwards, 1968; Phillips & Edwards, 1966). By
and large, though, the experimental findings were considered as evidence for sound proba-
bilistic reasoning, giving rise to the metaphor of “man as intuitive statistician”(Peterson &
Beach, 1967). Researchers in the heuristics-and-biases program, however, came to a rather
different conclusion, arguing that typically people’s diagnostic inferences are not in line with
classic Bayesian norms (e.g., Kahneman, Slovic, & Tversky, 1982; Tversky & Kahneman,
1974; for a critical review, see Koehler, 1996). The discrepancy has led researchers to more
precisely characterize the conditions under which people can make appropriate diagnostic
inferences, for instance, when probabilistic information is conveyed in particular frequency
formats (Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017; Meder & Gigerenzer, 2014).

The conditional probability of cause given effect derived by applying Bayes’ rule to
verbally described probabilities or sample data has been endorsed by many researchers as the
normative standard, even when they otherwise debate whether and under what conditions
people can solve such tasks. Next, we analyze diagnostic reasoning from the perspective of
inductive causal inferences, using causal Bayes net theory to implement different candidate
models for a rational account of diagnostic reasoning. These approaches differentiate between
parametric causal models and observable contingency information and can therefore lead to
very different predictions than accounts that derive the conditional probability of cause given
effect directly from the observed empirical data without any reference to an underlying causal
model.
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Fig. 1. (a) Three joint frequency distributions over cause C and effect E. In each data sample,
the diagnostic probability of cause C given effect E is 0.75. (b) Alternative causal structures that
may have generated the data. According to structure S1 there is a causal relation between C and
E, as well as background causes A that can cause E independently of C. According to structure
S0, candidate cause C and effect E are independent; any observed empirical contingency is merely
coincidental and caused by background causes A. (c) Model predictions and empirical results. The
empirical probability of cause given effect is 0.75 in all three data samples. If uncertainty about
possible causal structures is taken into account, different diagnostic probabilities result, depending
on the extent to which the data warrants the existence of a causal relation (i.e., supports S1 over
S0). Mean human judgments are not invariant across the three data sets, suggesting that people
are sensitive to uncertainty about causal structure (Meder et al., 2014, Experiment 2).

2.2 Diagnostic Reasoning as Causal Inference

One goal of rational agents is to acquire knowledge about the causal structure of noisy envi-
ronments, in order to support prediction, diagnosis, and control (Waldmann, 2017; Chapter
7.2 by Waldmann, in this volume). In this view, diagnostic inferences operate on representa-
tions that preserve the directionality of causal relations (as opposed to undirected statistical
or associative relations). This distinguishes the account from Bayes’ rule, which is applicable
to arbitrary statistically related events and does not make any reference to possible causal
relations that may underlie the observed data.

The standard causal model for situations involving a binary cause event and a binary
effect event is structure S1 in Figure 1b. This graph states that there is a causal relation
between C and E, as well as an amalgam of unobserved background causes A that occur
independently of C and can also generate E. Cheng (1997; see also Glymour, 2003; Griffiths
& Tenenbaum, 2005; Novick & Cheng, 2004) showed that the generative causal power of a
cause—the unobservable probability with which C produces E—can be estimated according
to

wc =
P (e|c)− P (e|¬c)

1− P (e|¬c)
(2)

where wc is the causal power of C with respect to E. The diagnostic probability of cause
given effect can be inferred from the parameterized causal structure:

P (c|e) =
P (e|c) · P (c)

P (e|c) · P (c) + P (e|¬c) · P (¬c)
=

wcbc + wabc − wcwabc
wcbc + wa − wcwabc

(3)
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where wc is the causal power of C with respect to E, bc denotes the base rate (prior proba-
bility) of the cause, and wa denotes the strength of the background cause A.

The quantities used to parameterize the causal structure are typically single-point esti-
mates derived directly from the empirical frequencies (i.e., maximum likelihood estimates of
P (c), P (e|c), P (e|¬c), and, hence, wc; see, e.g., Cheng, 1997). In this case, the conditional
probability of cause given effect derived from the parameterized causal graph exactly corre-
sponds to the values obtained from directly applying Bayes’ rule to the empirical frequencies,
although diagnostic reasoning takes place on the causal rather than the data level (Meder et
al., 2014).1 This is not necessarily the case, though, if uncertainty about causal parameters
or alternative generative causal models is incorporated in the diagnostic inference process.

2.3 Diagnostic Reasoning: Parameter Uncertainty and Causal Structure
Uncertainty

Analyzing diagnostic reasoning from the perspective of causal induction enables considera-
tion of different kinds of uncertainty in the inference process. Parameter uncertainty arises if
estimates are derived from limited and potentially noisy data. Formally, this type of uncer-
tainty can be modeled by using probability distributions for representing causal parameters,
rather than single-point estimates, with the parameter distributions being updated in light
of the data using Bayesian inference. Importantly, the posterior distributions quantify and
represent uncertainty explicitly (e.g., through the variance of the distributions).

Another type of uncertainty is structure uncertainty, which pertains to possible causal
models that may underlie the observed data. The structure induction model of diagnostic
reasoning (Meder et al., 2014) takes this into account by considering two causal graphs
(Figure 1b): instead of using only the default structure S1, the model also considers an
alternative structure S0 according to which there is no causal relation between C and E.
The intuition behind this is that an observed contingency between C and E may not be
indicative of a causal relation but merely coincidental, and rational agents should take this
into account. The data is then used to estimate the causal structures’ parameters through
Bayesian inference, and under each parameterized structure an estimate of the diagnostic
probability is derived. Under S1, assuming uniform prior distributions over the parameters,
the computed probability will approximate the empirically observed P (c|e). Structure S0, by
contrast, states that C and E are independent events; therefore, observing E does not provide
diagnostic evidence for C (i.e., P (c|e) = P (c)). The structure induction model computes
how likely each of the two structures is, given the data, and forms a weighted average of
the entailed diagnostic probabilities, with the resulting estimate taking into account both
parameter and structure uncertainty.

Depending on the relative probability of S0 and S1, the inferred diagnostic probability
can strongly diverge from the empirical probability. Figure 1c illustrates this for the three
data sets shown in Figure 1a: In all three data sets the empirical probability is P (c|e) = 0.75;
therefore a rational agent might conclude that the diagnostic probability of cause given effect
is the same in all three situations. Consideration of alternative causal structures leads to
very different inferences. For instance, for Sample 1 the structure induction model entails
a diagnostic probability of 0.61, much lower than the empirical probability of 0.75. This
discrepancy arises from the fact that the contingency between cause and effect is relatively
weak, so that structures S0 and S1 are almost equally likely to have generated the data. For
Samples 2 and 3 the discrepancy is smaller, as these data indicate a stronger contingency
between C and E, making it more likely that S1 is indeed the true generating model.

1 Consider Sample 1 in Figure 1a (top). The empirical probabilities derived from the frequency
data are P (c) = 0.5, P (e|c) = 0.3, and P (e|¬c) = 0.1. Accordingly, wc = 0.22 (Equation 2),
with P (c) and P (e|¬c) serving as estimates for bc and wa, respectively. Plugging these values
into Equation 3 yields P (c|e) = 0.75; the same value results when applying Bayes’ rule to the
empirical probabilities (Equation 1).
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Interestingly, human diagnostic judgments mirror structure uncertainty: judgments strongly
vary, although the empirical probability of cause given effect is identical across the three
data sets (Figure 1c; for details, see Meder et al., 2014). From the perspective of the classic
statistical inference perspective, this response pattern looks irrational. By contrast, viewed
as resulting from a causal inference strategy that is adapted to the uncertainties of the world
outside the laboratory, the judgments reflect rational reasoning.

3 Rational Models of Causal Attribution

Theories of diagnostic reasoning typically assume that the goal of the reasoner is to infer
the conditional probability of cause given effect. In many diagnostic reasoning scenarios,
however, it is judgments of the causal responsibility (or causal attribution) which are of
interest, that is, of the probability that a candidate cause brought about the effect. For
instance, instead of merely assessing the probability of a particular genetic disposition’s
being present, a doctor may want to find out whether that disposition is the cause of a
patient’s symptoms. This quantity is different from the diagnostic probability of cause given
effect. For instance, if there is no causal relation (i.e., P (e|c) = P (e|¬c) and, therefore,
wc = 0), it holds that P (c|e) = P (c). But, intuitively, if there is no causal dependency, then
the probability that C produced E is zero.

Whereas a purely statistical account lacks the expressive power to model judgments of
causal attribution, they can be formalized within a causal modeling approach (Cheng &
Novick, 2005). Let c → e denote that the presence of effect E is generated by the presence
of cause C. The query of whether the occurrence of effect E can be attributed to cause
C translates to determining the conditional probability P (c → e|e). Given parameterized
structure S1, this quantity can be computed as follows (for details and for further measures
of causal responsibility, see Cheng & Novick, 2005):

P (c→ e|e) =
P (e|c→ e) · P (c→ e)

P (e)
=

bcwc

bcwc + wa − bcwcwa
(4)

In its original formulation, parameters bc, wa, and wc are maximum likelihood point es-
timates directly derived from the empirical data. Bayesian variants of the model (Holyoak,
Lee, & Lu, 2010) can incorporate parameter uncertainty, and the computations can also be
incorporated into the structure induction model of diagnostic reasoning, in which case esti-
mates of causal responsibility take into account both parameter and structure uncertainty
(Meder et al., 2014). This approach has been successfully used to account for people’s judg-
ments of causal attribution about singular cases (Stephan & Waldmann, 2016; Stephan &
Waldmann, 2018).

4 Diagnostic Reasoning in Complex Causal Networks

Real-world scenarios typically involve complex causal networks relating multiple causes and
multiple effects, such as diagnostic reasoning with multiple symptoms and multiple possible
diseases. In the causal Bayes net framework, the factorization of the joint probability dis-
tribution over the considered variables is determined by the causal relations in the graph.
This follows from applying the causal Markov condition, according to which the state of
any variable in the graph is a function only of its direct causes, rendering it independent of
all other variables except its direct and indirect effects (Hausman & Woodward, 1999; for
a critique, see Cartwright, 1999, 1989). For instance, in the common-effect model shown in
Figure 2a, causes A and C are unconditionally independent, but dependent conditional on
their common effect B. In the common-cause model (Figure 2b), A and C are two effects of
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a common cause B. If the Markov condition holds, this implies that A and C are uncondi-
tionally dependent, but independent conditional on their common cause B (B ”screens off“
the correlation between A and C; Reichenbach, 1956). Similarly, in the causal-chain model
(Figure 2c), A and C are unconditionally dependent, but conditionally independent given
B.
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Fig. 2. Basic causal structures comprising three variables A, B, and C. Applying the causal Markov
condition to each causal graph entails a different factorization of the joint probability distribution
P (A,B,C) over domain variables A, B, and C.

The causality-based factorization implies particular dependence and independence rela-
tions among the variables, which facilitate and constrain diagnostic inferences across causal
networks. For instance, when reasoning diagnostically in common-effect structures, explain-
ing away is an intriguing inference pattern (Morris & Larrick, 1995; Pearl, 1988). Explaining
away occurs when conditioning not only on the effect but also on the known presence of
an alternative cause. Consider Figure 2a and assume B is a symptom (e.g., fever) with two
independent, not mutually exclusive, causes A and C (e.g., a virus and a bacterial infection).
With respect to cause A, explaining away corresponds to the inequality P (a|b) > P (a|b, c).
Knowing that a patient has a fever will raise the probability of her being infected with the
virus, but learning additionally that she has a bacterial infection will lower the probability
of the virus to some extent. In other words, knowing that not only effect B but also the
alternative cause C is present will explain away some of the diagnostic evidence provided
by B with respect to A (for an overview, see Khemlani & Oppenheimer, 2011).

Another kind of diagnostic reasoning involves inferences from multiple effects (e.g., dif-
ferent symptoms) to an underlying cause (e.g., a disease), constituting a common-cause
structure (Figure 2b; Meder & Mayrhofer, 2017b). According to this structure, effects A
and C are unconditionally dependent (e.g., lung cancer and yellow teeth correlate because
of their common cause, smoking), but independent conditional on their common cause B.
This property strongly simplifies diagnostic inferences, because the number of estimates
required to parameterize the causal structure is greatly reduced. In particular, the joint
likelihood of the effects given the cause can be computed as the product of the individual
likelihoods of the effects given the cause. However, research also indicates that people’s judg-
ments do not always honor the causal Markov condition, suggesting important pathways for
further investigating the rationality of human reasoning (Park & Sloman, 2013; Rottman &
Hastie, 2016).

5 Toward a Rational Theory of Diagnostic Reasoning

Models of diagnostic reasoning fundamentally differ with respect to their assumptions, repre-
sentations, and involved computations. As a consequence, they can make strongly diverging
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predictions in many situations. What are the implications for constructing a rational the-
ory of diagnostic inference and what does this mean for the experimental study of human
rationality?

On the theoretical level, analyzing diagnostic reasoning from the perspective of induc-
tive causal inference provides new insights into an old problem. Causal Bayes net theories
have the expressive power to distinguish between the data level (i.e., covariation informa-
tion) and parametric causal models that could underlie the observations. A causal modeling
framework also enables formalizing diagnostic inferences that do not pertain to the condi-
tional probability of cause given effect, such as judgments of causal responsibility. Some of
the accounts that can be implemented within this framework are isomorphic to the classic,
purely statistical model in the sense that the inferred diagnostic probability of cause given
effect is identical to applying Bayes’ rule to the empirical probabilities. Other models make
very different predictions about what would constitute a rational solution to the inference
problem, for instance, when incorporating uncertainty about alternative causal structures
into the judgment process. As a result, inferences that look irrational from the perspective
of one model (e.g., a statistical account operating on the data level) would be considered ra-
tional from the perspective of another model (e.g., a causal inference account that considers
structure uncertainty).

This also raises critical methodological issues for the experimental study of human ra-
tionality, which all too often involves comparing human behavior to a single, supposedly
normative, yardstick. Rarely, if ever, will there be a single rational theory for a particular
phenomenon (Cohen, 1981; Gigerenzer, 1996; cf. Chapter 2.4 by Fiedler, in this volume).
First, different frameworks exist that can—and should—be used to construct rational the-
ories, including probability theory (Anderson, 1990; Chapter 4.5 by Chater & Oaksford, in
this volume), logic-based theories (Ragni & Knauff, 2013), ranking theory (Spohn, 2012;
Chapter 5.3 by Kern-Isberner, Skovgaard-Olsen, & Spohn, in this volume), and theories of
bounded and ecological rationality (Chase, Hertwig, & Gigerenzer, 1998; Chapter 8.5 by
Hertwig & Kozyreva, in this volume). Comparing different types of models can provide in-
sights that could not be gained when restricting the analysis to one particular theoretical
viewpoint. Moreover, within a particular methodological framework, different models can
be implemented and defended as rational, challenging the common approach of compar-
ing human behavior to a single, supposedly normative, standard (Meder et al., 2014). In
the case of elemental diagnostic reasoning, all the models discussed in this chapter rely on
some form of probabilistic inference, but their scope, assumptions, and predictions strongly
differ. From the perspective of the behavioral sciences, these models should be considered
candidate theories, not standards, of human behavior (McKenzie, 2003). In this view, the
influence runs both ways: rational theories can inform empirical research, but if there is a
stable behavioral pattern that is inconsistent with a particular rational model, one should
also revise one’s beliefs about the appropriateness of the presumed normative yardstick.
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